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Today

o Event studies

o Video lectures & exercises




Methods for causal inference in the social sciences

Experiments

Qo

o Instrumental variables

o

Regression discontinuity designs

o Difference-in-differences
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Difference-in-differences with social media data

o Allows for examination of the effects of an event or policy
change

o Typically with users who are treated as compared to control
users who are not

o Or can examine the differential effects of an event on multiple
groups of users
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Treatment and control case

Can Exposure to Celebrities Reduce Prejudice? The Effect of

Mohamed Salah on Islamophobic Behaviors and Attitudes
ALA’ ALRABABA’H Stanford University

WILLIAM MARBLE  Stanford University

SALMA MOUSA Yale University

ALEXANDRA A. SIEGEL University of Colorado Boulder

an exposure to celebrities from stigmatized groups reduce prejudice? To address this question, we

study the case of Mohamed Salah, a visibly Muslim, elite soccer player. Using data on hate crime

reports throughout England and 15 million tweets from British soccer fans, we find that after Salah
joined Liverpool F.C., hate crimes in the Liverpool area dropped by 16% compared with a synthetic
control, and Liverpool F.C. fans halved their rates of posting anti-Muslim tweets relative to fans of other
top-flight clubs. An original survey experiment suggests that the salience of Salah’s Muslim identity
enabled positive feelings toward Salah to generalize to Muslims more broadly. Our findings provide
support for the parasocial contact hypothesis—indicating that positive exposure to out-group celebrities
can spark real-world behavioral changes in prejudice.
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Differential treatment effects

The Profession

The Pandemic and Gender Inequality in
Academia

Eunji Kim, Vanderbilt University, USA
Shawn Patterson Jr., Southern Oregon University, USA

Has the pandemic exacerbated gender inequality in academia? We provide real-
time evidence by analyzing 1.8 million tweets from approximately 3,000 political scientists,
leveraging their use of social media for career advancement. Using automated text analysis
and difference-in-differences estimation, we find that although faculty members of both
genders were affected by the pandemic, the shift to remote work caused women to tweet
less often than their male colleagues about professional accomplishments. We argue that
these effects are driven by the increased familial obligations placed on women, as
demonstrated by the increase in family-related tweets and the more pronounced effects
among junior academics. Our evidence demonstrating the gendered shift in professional
visibility during the pandemic provides the opportunity for proactive efforts to address
disparities that otherwise may take years to manifest.
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Difference-in-differences setup

o Must have “panel data”: data on which units (individuals,
regions, countries) are observed over time
o There is a “shock” to some units (a treatment group) at a
specific period in time, but not others (a control group)
« e.g. A new policy is implemented
« e.g. An event occurs in some place, but not others
o Assume that treatment units would have followed the same
trend as the control group were it not for the shock (the
counter-factual)
« Parallel trends assumption
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Card and Krueger (1994): The classic DD setup

o Debate among economists about whether increasing the
minimum wage causes an increase in unemployment

o At the time, there is cross-sectional evidence that this is true

o But US states do not select a minimum wage at random, so
cross-sectional designs not appropriate
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Card and Krueger’s (1994): The solution

o Compare a treatment and control case over time
o New Jersey raised its minimum wage in April 1992

o Card and Krueger (1994) compare employment in New
Jersey's fast food industry to that of neighboring Pennsylvania
before and after the minimum wage increase

o Result: If anything, a positive effect on employment
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Card and Krueger’s (1994): Two-period diff-in-diff

o Two units:
o Treatment case: New Jersey
« Control case: Pennsylvania
o Four observations
« Pre-treatment (t = 0)

o Minimum wage in New Jersey (untreated)
o Minimum wage in Pennsylvania (untreated)

« Post-treatment (t = 1)
o Minimum wage in New Jersey (treated)
o Minimum wage in Pennsylvania (untreated)
Difference-in-differences: Compare the difference in employment between

New Jersey and Pennsylvania at t = 0 to the difference at t =1
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Why are we comparing the difference in employment
between two states?

o We need a way to create a counter-factual comparison for
New Jersey

o We will assume that—if no new policy were

implemented—changes in the number of employees for New
Jersey and Pennsylvania would move in parallel
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Difference-in-differences estimate

New Jersey (treated):

« Before: 7

o After: 11

o Differencepy: 11 -7 =4
Pennsylvania (control):

. Before: 5

o After: 7

o Differencepp: 7—5=2

The difference in these two differences? 4 —2 =2

(0]

o

o

o This is the difference-in-differences estimate of the effect of a
minimum wage increase on employment
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A bit more formally

Difference for New Jersey from t =0 to t = 1:

(Ynjt=1— Ynst=o) (1)

Difference for Pennsylvania from t =0 to t = 1:

(Year—1— Year—o) (2)

The difference-in-differences estimate is:

(Wnst=1— Yaue=0) — (Ypar=1— Year=o) (3)



Parallel trends
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The big assumption that allows us to use an untreated unit
as a control is the “parallel trends assumption”

That, had there been no change in policy:

Difference in New Jersey employment
if no minimum wage policy change
A

(Y(0)post| T=1) = Y(0)pre| T = 1) —

(Y(O)post‘ T = 0) - Y(O)pre’ T = 0)
Difference in Penn;}jlvania employment
if no minimum wage policy change

We need to assume that this is equal to zero (else the diff-in-diff
estimate is biased)
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Why might the parallel trends assumption be broken?

o Something else happens at the same time as the treatment
that affects the groups differently

« e.g. A big McDonald’s ad campaign in New Jersey
o Other shocks or events

« Macro- or micro-level economic forces affect Pennsylvania
differently from New Jersey

o Longer term trends are different in general
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Choose of control unit(s) thus matters

o Card and Krueger (1994) recognized this:
« New Jersey and Pennsylvania have similar economic
composition
« Same weather
« Same region, so similar economic or other shocks
o Nevertheless this might give (undue) discretion to researchers
« Can also automate the selection of control comparison cases
with “synthetic control” methods (Adadie et al. 2003, 2010,
2015)
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This is the canonical two-period diff-in-diff. But...

o Often we have many periods, so can't run a simple regression
for just two cases

o Often treatment timing varies (e.g. a minimum wage increase
is implemented in different states at different times)

o We thus need a generalized difference-in-differences model

o So let's look at one example as an application...
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COVID-19 and gender inequality in academia
The Pandemic and Gender Inequality in
Academia

Eunji Kim, Vanderbilt University, USA
Shawn Patterson Jr., Southern Oregon University, USA

IS5 Has the pandemic exacerbated gender inequality in academia? We provide real-
time evidence by analyzing 1.8 million tweets from approximately 3,000 political scientists,
leveraging their use of social media for career advancement. Using automated text analysis
and difference-in-differences estimation, we find that although faculty members of both
genders were affected by the pandemic, the shift to remote work caused women to tweet
less often than their male colleagues about professional accomplishments. We argue that
these effects are driven by the increased familial obligations placed on women, as
demonstrated by the increase in family-related tweets and the more pronounced effects
among junior academics. Our evidence demonstrating the gendered shift in professional
visibility during the pandemic provides the opportunity for proactive efforts to address
disparities that otherwise may take years to manifest.
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What were the effects of the COVID-19 pandemic on
family obligations among women and men in academia?

o Collect users names of political scientists who follow at least 1
of 5 major political science accounts (n = 2,912)

o Manually search website pages of each to determine gender,
rank, and institutional affiliation

o Collect all tweets from each person from June 1, 2019 onward
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Measuring work- and family-related topics

o Keyword search for family and work terms
o Hand coded 100 of the tweets with these keyword and
expanded the keyword list based on these

o For each user's Twitter feed, calculate the number of
family-related and work-related tweets
« i.e. each row is the count (and proportion) of family-related
tweets in a given week by a given user
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Example data

week user_id female rank num_family prop_family num_work prop_work pandemic
2019-06-01 1 1 Full prof. 30 0.15 40 0.2 0
2019-06-08 1 1 Full prof. 20 0.1 10 0.05 0
2019-06-15 1 1 Full prof. 80 0.4 10 0.05 0
2019-06-22 1 1 Full prof. 25 0.12 30 0.15 0
2020-05-02 2912 1 Asst prof. 80 0.4 10 0.05 1
2020-05-09 2912 1 Asst prof. 25 0.12 30 0.15 1

o i.e. each row is the number/proportion of tweets for one
specific user in a given week
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What is being estimated in a diff-in-diff framework?
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What is being estimated in a diff-in-diff framework?
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What is being estimated in a diff-in-diff framework?

100 |
" |
o | Counter—factual
) o % -0
S 75  Femaleuser : . o e
=
8 I P Observed
5 I/
o) 1S
S
5 50 I
x Male user I
(=}
= I
S I
o
= 25 |
3 |
(@] I Post-pandemic counter—factual: 30

Pre—pandemic difference: 30 | Post-pandemic observed: 10
0 |
Dec Jan Feb Mar Apr May

Slide 27 of 55



Introduction Basic setup Parallel trends Example Event study models Conclusions
0000 000000000000 0000 0000@0000000000 000000000000 00000 [e]

What is being estimated in a diff-in-diff framework?
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Work-related tweets for women and men

. Female ~~ Male

First CQVID-19

Trump declared
‘a national

Percent of Work—Related Tweets

Jun'19 Jul'19 Aug'19 Sep'19 Oct'19 Nov'19 Dec'19 Jan'20 Feb'20 Mar'20 Apr'20 May'20 Jun'20



Family-related tweets for women and men
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Okay, so how do we estimate a diff-in-diff across all
users?

Y = 0; + ¢t + B(pandemic, x woman;) + €;
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o O;: user fixed effect
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Okay, so how do we estimate a diff-in-diff across all
users?

Yir = 8i + 1t + B(pandemic, x woman;) + €j;

O yjt: outcome (family-related tweets/work-related tweets)
O d;: user fixed effect

O K¢ week fixed effect

o f3: effect of the pandemic on women relative to men

O Note that Kim and Patterson Jr. have an « in their model specification,
but that will just drop out

O Cluster your standard errors at the unit level

Slide 30 of 55



Introduction Basic setup Parallel trends Example Event study models Conclusions
0000 000000000000 [e]ele]e} 00000000@000000 0000000000000 0000 o

Regression results

Table 3: The Pandemic Effect on Family- and Work-Related Tweets

Family Work Family Work  Family Work  Family = Work

All Faculty Assistant Associate Full

1) (@) 3) 4 ®) 6 )] ®)
Female*Pandemic 0.967***  -1.354™* 1.268"** -1.631"* 0.811* -1.188* 0.573  -0.895
(0220)  (0.324)  (0.353)  (0.498) (0.387) (0.579) (0.406) (0.630)

Individual Fixed Effect? Yes Yes Yes Yes Yes Yes Yes Yes

Time Fixed Effect? Yes Yes Yes Yes Yes Yes Yes Yes
Observations 100,152 100,152 43,052 43,052 31,735 31,735 25,365 25,365

R? 0.114 0.181 0.107 0.154 0.116 0.200 0.128 0.209

Note: Standard errors are in parentheses. * p<0.05; ** p<0.01; *** p<0.001
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Validity depends heavily on the parallel trends
assumption, however

o Our estimate is valid if our treatment group would have
changed in the same way as our control group were it not for
the event or policy change

o This is fundamentally unknowable...

o But we can check this indirectly by examining whether the
trends between groups is parallel before the event or policy
change

o i.e. in each time period, does the difference between groups
more or less stay the same over time?
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Look at the pre-trend differences:

100

75 Female user

Observed

Count of work—-related tweets
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Male user
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| Post-pandemic counter—factual: 30
Pre—pandemic difference: 30 | Post-pandemic observed: 10
0 |
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Check for pre-pandemic parallel trends by examining
differences week by week before the intervention

Figure 3: Pre-Treatment Gender Difference in Work- and Family-Related Tweets (%)
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included. Vertical lines represent the 95% CI and the dots indicate the estimated coefficient of the interaction
term. Navy indicates the results for the work-related tweets, and lighter blue indicates the results for the
family-related tweets. Null results suggest there was no consistent pre-treatment difference in trends.
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Maybe something happens in March in general to cause
this effect?

Table 4: The Absence of the Seasonality Effect in Gender Difference

2019 2020
Family ~ Work Family Work
(1) (2) (3) (4)

Female*Pandemic 0.014 -0.497 1.108*** -1.231%**

(0.277) (0.431) (0.263) (0.372)
Individual Fixed Effect? Yes Yes Yes Yes
Time Fixed Effect Yes Yes Yes Yes
Observations 40,518 40,518 46,257 46,257
R? 0.159 0.222 0.171 0.218

Note: Standard errors are in parentheses. * p<0.05; ** p<0.01; *** p<0.001
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What if we ran the model on an outcome where we
shouldn’t expect to find any effect?

Figure 4: Daily Trends in % Trump- and Biden-Related Tweets
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Event study models Conclusions

What if we ran the model on an outcome where we
shouldn’t expect to find any effect?

Table 5: The Lockdown Effect on Trump- and Biden-Related Tweets

All Faculty  Assistant  Associate Full

(1) @) (3) 4

Female*Pandemic 0.087 0.003 0.104 0.259
(0.146) (0.173) (0.258) (0.370)
Individual Fixed Effect? Yes Yes Yes Yes
Time Fixed Effect Yes Yes Yes Yes
Observations 101,408 43,589 32,135 25,684
R? 0.254 0.183 0.215 0.320

Note: Standard errors are in parentheses.

* p<0.05; ** p<0.01; *** p<0.001
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Event study models

o Diff-in-diff models calculate an effect as a weighted average of
treated and control units pre- and post-event/policy

o But what if we want to see the dynamics of an effect?

o How long does it last?

o Does it occur immediately?




Event study models

o Event study models are effectively just difference-in-differences
per time period

o In Kim & Patterson Jr., compare each week after the
lock-downs relative to a lock-down baseline ...
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Event studies calculate differences between treatment and control per
time period

Diff-in—diff estimate: B=1.279
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Event study estimates: Separate estimates (3, per period
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Event study application

Do Violent Protests Affect Expressions of Party Identity? Evidence
from the Capitol Insurrection

GREGORY EADY  University of Copenhagen, Denmark

FREDERIK HIJORTH University of Copenhagen, Denmark

PETER THISTED DINESEN  University College London, United Kingdom, and University
of Copenhagen, Denmark

porary manifestation of deep political polarization in the United States. Recent research shows that

violent protests shape political behavior and attachments, but several questions remain unan-
swered. Using day-level panel data from a large sample of US social media users to track changes in the
identities expressed in their Twitter biographies, we show that the Capitol insurrection caused a large-scale
decrease in outward expressions of identification with the Republican Party and Donald Trump, with no
indication of reidentification in the weeks that followed. This finding suggests that there are limits to party
loyalty: a violent attack on democratic institutions sets boundaries on partisanship, even among avowed
partisans. Furthermore, the finding that political violence can deflect copartisans carries the potential
positive democratic implication that those who encourage or associate themselves with such violence pay a
political cost.

i _’ Yhe insurrection at the United States Capitol on January 6, 2021, was the most dramatic contem-
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What are the consequences of violent protests on political
behavior and attachments? Two recent studies:

o Proximity to black-led protests caused increased support for
restrictive policies and support for the Republican Party
(Wasow 2020)

o Proximity to LA riots led to liberal shift in policy support, and
increase in support for Democratic Party (Enos et al. 2019)

Slide 43 of 55



Introduction Basic setup Parallel trends Example Event study models Conclusions
0000 000000000000 0000 0000000000000 00 000000e0000000000 o

Unanswered questions

o Politics are now heavily nationalized, so what are broader
effects of violent protest?

o What are the consequences of violent protest when conducted
by those on the political right?

o Do these effects occur quickly, or only after longer sustained
elite politicization?
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Research setup

o Examine the behavioral reaction to the Capitol insurrection by
studying online de-identification with the Republican Party
(and Donald Trump)

o A hard test of the scope conditions of the ‘unmovable’
character of (expressed) partisanship in the US
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Research setup

o Day-level panel data of the profiles of 3.4 million active US
Twitter users (June 1, 2020+)

o Follow 14+ major US news organization (from MSNBC to
Brietbart)

o ~1 billion user-day observations of Twitter bios (profiles)

o Keyword expansion to identify explicitly partisan terms in
users' bios
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A stylized example

date

profile text

2020-06-01
2020-06-02
2020-06-03
2020-06-04
2020-06-05

Proud Texan Republican! Grandmother, mother,
Proud Texan Republican! Grandmother, mother,
Proud Texan Republican! Grandmother, mother,
Proud Texan! Grandmother, Mother, Christian,
Proud Texan! Grandmother, Mother, Christian,

Christian, #MAGA
Christian, #MAGA
Christian, #MAGA
and proud American
and proud American
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Net change in Republican ID over time

Net change in Republican Party ID

o
b
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Event study
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Okay, so how do we estimate this event study model?

Vit = o+ Ar + Z B:Republican; + €,
t#0
yjt: outcome (partisan terms in Twitter bio)
«;: user fixed effect

At: day fixed effect

o O O O

B¢: effect of the insurrection on Republicans including partisan terms
(relative to Democrats)
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Okay, so how do we estimate this event study model?

Yit = & +)\1_- + Z BtRepublican,- + €jt,
t#0
O yj: outcome (partisan terms in Twitter bio)
O «;: user fixed effect
O A:: day fixed effect

O [3;: effect of the insurrection on Republicans including partisan terms
(relative to Democrats)

o Note in the sum there is no § for t = 0 because t = 0 (the day right
before the insurrection) is our baseline
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Although this isn’t in the paper, one could fit a standard
diff-in-diff model

yit = & + At + B(Insurrection; x Republican;) + €,

(@]

yit: outcome (partisan terms in Twitter bio)

O o user fixed effect

(@]

At: day fixed effect

o [3: effect of the insurrection on Republicans including partisan terms
(relative to Democrats)

o Note that this compares the difference pre-insurrection to the
post-insurrection period overall rather than per day
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Robustness
o Fear of prosecution?

« Remove any user who deleted/scrubbed any tweets on day of
de-identification.

o Because Twitter deleted QAnon in weeks afterward?

« Remove any user who was deleted during time period of
interest.
« Also, as above, any user who scrubbed timeline.

o Just Trump-related?
« Same result (| magnitude) if use party-only terms

o But isn't the effect just temporary? ...
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Effect duration (re-identifiers)
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Conclusions

o Within 3 weeks after the insurrection, 1 in 14 previously
Republican-identifying users had removed partisan terms

o Democracy-threatening violence can set boundaries on
partisanship, even among avowed partisans

o Positive democratic implication that those who encourage

political violence may pay a political cost by way of partisan
de-mobilization
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Conclusions

o Often good to apply both types of models in a paper

o The parallel trends assumption is extremely important

o Fortunately, event study models allow you to visually check
pre-treatment parallel trends

o If the trends are not parallel, look into modeling unit-level
trends (not difficult to do)

o Ask me about it if you ever want to do this

o There is a massive literature on diff-in-diff and event study
models

« E.g. synthetic control (like in Alrababa'h et al.)
. E.g. staggered treatment (units treated in different periods)
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