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Today

❍ Sentiment analysis

❍ Video lectures & exercises
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How can we measure the sentiment of social media (or
other text) data?

❍ The tone of content may matter as much as the substance

❍ Affect is linked to decision-making and judgment

❍ Tone changes how we process news media

❍ Various cases where sentiment is useful to measure on social
media (e.g. positive or negative attitudes toward immigrants;
tone of news coverage; tone of political campaigns)
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The key and obvious problem for large-scale sentiment
analysis

❍ Time

‚ Manually coding millions of tweets is effectively impossible

❍ Money

‚ Finding funding to have annotators code thousands of tweets
is challenging
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Automated sentiment analysis

❍ Allows us to analyze massive amounts of data easily

❍ Are two broad possible approaches:

1. Statistical
2. Non-statistical
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1. Statistical (data-driven) approaches

❍ Supervised learning
‚ Some texts in our data (e.g. social media posts) have labels
indicating whether (or the degree to which) they express
positive or negative sentiments

‚ We then use machine-learning to develop a model that predicts
whether any arbitrary text expresses positive or negative
sentiments

‚ We apply that model to predict the sentiment of the remaining
unlabeled texts

❍ Unsupervised learning
‚ Use unlabeled data to learn from word co-occurrences in the
data to infer unknown categories (e.g. topic models)

Slide 6 of 52



2. Non-statistical (dictionary-based) approaches

❍ Simple interpretation and implementation

❍ Basic idea:

‚ Categorize words or phrases that one believes express positive
or negative sentiment

‚ In a given document (e.g. social media post), count the
number of words that are positive and negative

‚ Take the difference between the number of positive and
negative words to calculate an overall sentiment score for that
document

❍ The challenge is to develop a good dictionary, but many
already existing in multiple languages
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Benefits to dictionary-based approaches

❍ Efficient: Once a dictionary is constructed, dictionary
approaches are extremely simple and fast

❍ Scope: Are applicable across wide ranges of texts

❍ Reliable: Will produce the same results if you apply them to
documents produced now or if you apply them to the same
documents in ten years from now
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Drawbacks to dictionary-based approaches

❍ Not domain-specific: Word meaning may differ strongly
across document types. (e.g. Twitter versus face-to-face
conversation)

❍ Changes in vocabulary over time: Words have different
meaning today than they used to (“LOL” used to be used
sincerely)
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Challenges in creating a dictionary itself

❍ Most are based on a bag of words with unigrams only

❍ Homographs (words that are spelled the same, but have
different meanings, e.g. lie)

❍ Context specificity, especially for negative modifiers (e.g. “not
happy”, “no good”, “never suitable”)

❍ Words likely to carry more weight than others (“evil” versus
“bad”)
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“Manual coding may be likened to the perspective of a beat cop in
a specific neighborhood, rich in context and detail-oriented, while
computer automation offers a bird’s eye view, like a helicopter pilot
circling the city to monitor overall crime patterns” (Young et al.
2012)
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On the one hand, using manual coding in conjunction
with supervised learning will almost always dominate a
dictionary-based approach

❍ You can define the concept as you want as a researcher

❍ You can tailor the coding scheme to your particular research objective

❍ Annotators can take into account the context

On the other hand, manual coding can be very costly, and if a dictionary

approach will be sufficient, then use it. No need to use fancier methods if you

don’t need to.
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Are many sentiment dictionaries

❍ LIWC (Linguistic Inquiry and Word Count)

❍ ANEW (Affective Norms for English Words)

❍ LSD (Lexicoder Sentiment Dictionary)

❍ Bing (Bing Liu et al. dictionary)

❍ NRC (National Research Council)

❍ AFINN (?)
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Basic idea in application...

❍ Simply count up the words that are negative and those that
are positive (or a similar approach)

Example of a negative sentiment Tweet:

Example of a positive sentiment Tweet:
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An early application to social media data
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Research motivation

❍ Little data to examine diurnal and seasonal mood

❍ Most studies use US undergraduates

❍ Most data are self-reported

❍ Social media data provide massive fine-grained behavioral
measures to capture individual mood over time
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Research setup

❍ Collect Twitter posts from 2.4 million users and 509 million
messages in 84 countries with English speakers (February
2008-January 2010)

❍ Use the LIWC sentiment dictionary to measure positive and
negative sentiment for each tweet
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Diurnal mood based on LIWC dictionary across days
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Diurnal mood based on LIWC dictionary across cultures
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A controversial application in political science
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Is emotion contagious?

❍ Offline, people are shown to take on the same emotions as
those around them

❍ Well-established in laboratory research

❍ But much past research is observational

❍ Some think that “contagion” is due to interacting with a
happy or sad person, not due to the emotion itself

❍ Others think that happiness might depress emotion through
social comparison
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Experimental setup:

❍ Manipulate the news feed of Facebook users

❍ Two different experimental treatments:

‚ Reduce exposure to negative emotional content from friends
‚ Reduce exposure to positive emotional content from friends

❍ Determine positive or negative posts based on a
dictionary-based method (researchers saw none of the actual
content)

❍ Roughly 155,000 users per condition
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Measurement of positive and negative sentiment
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Outcomes:

❍ Percent of positive words written by a user

❍ Percent of negative words written by a user
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Empirical expectations if emotional contagion true:

❍ Those in the positivity-reduced condition should be less
positive compared with the control

❍ Those in the negativity-reduced condition should be less
negative with the control
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Empirical expectations if cross-emotional contagion
true:

❍ Those in the positivity-reduced condition should express
increased negativity

❍ Those in the negativity-reduced condition should express
increased positivity
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Main results:

❍ When positive posts were reduced, people posted fewer
positive words in their status updates, and increased negative
words

❍ When negative posts were reduced, people posted fewer
negative words in their status updates, and increased positive
words

❍ Is therefore evidence of mass emotional contagion

Slide 28 of 52



Slide 29 of 52



Implications:

❍ Because treatment was posts online, we know the mechanism
is not interacting with negative/positive people

‚ Contagion, thus does not require non-verbal behavior

❍ No negativity bias, because relatively equal effects for positive
and negative posts

❍ Withdrawal effect: People are less expressive when less
exposed to emotional posts

❍ No evidence that seeing more positive posts leads to
negativity (through social comparison)

❍ Effects sizes are very small, but may have large aggregated
consequences
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Examining campaign tone with sentiment analysis
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Research motivation

❍ Negative political communication is tied to a variety of
outcomes, including political preferences and voter turnout

❍ Evidence from psychology suggest that negative emotions
tend to prevail over positive ones

❍ There are clear incentives to go negative: attract more
attention and more likely to be remembered than positive ones

❍ Do we actually start to see campaigns go negative when their
chance of winning diminishing?
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Research setup: The 2014 Scottish referendum

❍ Two clearly defined sides: Yes Scotland & Better Together

❍ Previous research suggests defenders of the status quo will go
negative in general

❍ But authors also examine whether negative sentiment
increased as the fortunes of the Yes campaign diminished
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Past research

❍ Research shows that vote choice is determined more by
negative campaigning than by positive campaigning

❍ Most political strategists suggest that negative
communication is an effective strategy

❍ Better Together messages concentrated on the losses
associated with a YES vote; Yes Scotland messages
concentrated on the gains from an independent Scotland
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Reasons to study negative campaigning during
referendums

1. Are, by definition, about positional issues

2. Two sides, so simpler to study

3. Dichotomous competition should favor negative campaigning,
because a loss for one side is a gain for the other
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Competitive context
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Data and Method

❍ Use tweets as a proxy for political communication during the
Yes Scotland and Better Together campaigns

❍ Collect tweets from @YesScotland (n = 3,078) and
@UK Together (n = 1,230) during the last 3 months of the
campaign

❍ Apply a dictionary-based sentiment analysis to all tweets from
each campaign using Bing Liu, Minqing Hu, and Junsheng
Cheng (2005)

❍ Sentiment scores are the difference between the number of
positive and negative words in each tweet
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Example of a negative sentiment Tweet:

Example of a positive sentiment Tweet:
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Results

Slide 39 of 52



Results
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Results
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Dictionary versus Data-driven Approaches to Sentiment
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Can sentiment analysis of social media data capture
well-being?

❍ Collecting measures of well-being is time- and
resource-intensive

❍ Dictionary-based approaches are a potentially simple way to
measure well-being

❍ Jaidka et al. (2020) assess the value of dictionary and
data-driven approaches to sentiment analysis
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Can sentiment analysis of social media data capture
well-being?

❍ LIWC a pre-determined set of positive and negative words

❍ Creators of the LabMT and ANEW dictionaries asked raters
to annotate words for their valence

❍ Data-driven methods using machine learning to identify the
assocations between linguistic information and its emotional
content (whole sentences annotated by rates)
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Authors assess how well these approaches predict
actual well-being

❍ Aggregate 1.73 million responses to the Gallup-Sharecare
Well-Being Index from 2009 to 2015 to get county-level
measures of life satisfaction, happiness, worry, and sadness
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Results
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Further results

❍ Data-driven approaches also better for predicting actual
county-level health and socio-economic outcomes

❍ Correcting for sample differences between Twitter and Gallup
didn’t change anything

❍ Looked at the individual level with Facebook users who had
answered the Gallup survey, and dictionary-based methods
also poor
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But why are dictionary methods so bad at predicting
well-being?

❍ Examine the positive dictionary words that are negatively
predictive of positive well-being

❍ Examine the negative dictionary words that are positively
predictive of positive well-being...
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..

Top right: “Positive” words that negatively predict happiness
Bottom left: “Negative” words that positively predict happiness
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❍ The words “LOL”, “love”, and “good” are some of the most
frequent words, accounting for about 25% of the county word
occurences

❍ Yet these are some of those that are negatively associated
with well-being (and income)

❍ Removing them uniformly improved convergence with the
Gallup measure (gray columns in Table 2)
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False LIWC words are also most frequently used in
certain regions
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❍ Dictionary methods should be used cautiously

❍ Most discrepanices are driven by a few frequent words (LOL,
love, good), that are now often used ironically or sarcastically

❍ Data-driven methods have higher convergent validity with
ground-truth measures of well-being

‚ But costly to implement
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