Political Analysis of Social Media Data
Topic Models

Instructor:  Gregory Eady
Office: 18.2.10
Office hours:  Fridays 13-15




Today

o Topic models

o Video lectures & exercises
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Fig. 1 An overview of text as data methods.
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Recall text-as-data pre-processing choices:

1. Punctuation: Spaces & special characters (e.g. $, %, &)

2. Numbers: Sometimes informative (e.g. Section 423 of the
U.S. Code); other times not

3. Lowercasing: Sometimes informative (e.g. “Trump” the
president, versus “trump” the verb)

4. Stopwords: Common function words, e.g. “the,” “and”, "“it,”
and “she,” or domain-specific ones “congress”
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Recall text-as-data pre-processing choices:

5. Stemming: Reducing a word to its root form

“

e €.g. party,
stem “parti”
6. n-Grams: treat multiple words as single “tokens”. As
bi-grams (2) or tri-grams (3), or more
. e.g. “national” means something much different when
combined with “debt” or “defense”, (“national defense” versus
“national debt”)

(LT

partying,” and “parties” all share a common

7. Infrequently used terms: Remove very infrequent or
frequent terms (e.g. remove words that occur in fewer than
0.5-1% of documents)
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Topic models:

o An unsupervised model for discovering the latent topics /
themes in a set of documents

o “Unsupervised” because we don't have any labels for the
topics of any documents

o Thus we only need the text of the documents themselves i.e.
no human annotators or pre-existing labels (similar to
unsupervised models for ideology)
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Topic models:

0

Classical topic model is called a Latent Dirichlet Allocation
(LDA) model

« “latent” because the topics are unobservable (i.e. unlabeled)
« ‘“dirichlet” because the model relies on a Dirichlet distribution

o Is a “generative model” in the sense that we posit a simple
process by which documents are created, and set up a model
to capture that process

o M documents, where documents are distributions over topics.

o K topics, where topics are distributions over words.

Slide 7 of 14



Topic Models
00@000000

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the|

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.

The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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How do LDA models assume documents are generated?

o

Are K topics. Are M documents. Are N words.
Choose v, ~ Dirichlet(o,)
« These are just the distribution of topics in each document m
(e.g. Ym=1 =10.25,0.7,0.05])
Choose By ~ Dirichlet(og)
« Distribution of words in a topic k (e.g. Yk—=1 = [“refugee’ =
0.15, “migrant” = 0.1, “taxes” =0, ...])
o Now, we'll fill up each document with words...
« Pick a topic from the document’s topic distribution:
z; ~ Multinomial (y )
« Pick a word from that topic’s word distribution:
w; ~ Multinomial (3 x—,)

I

o
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What parameters do we actually care about?

1. v: a M x K matrix where columns are the proportions of each topic in
each document:

Topic1  Topic2 Topic3 ... Topic K
Document 1 0.02 0.00 0.10 0.45
Document 2 0.00 0.03 0.90 0.05
Document 3 0.20 0.01 0.01 0.4
Document M 0.30 0.30 0.30 0

2. : a K x N matrix where columns are the proportions of each word in

each topic:

Word 1 Word2 Word3 ... Word N
Topic 1 0.002 0.001 0.000 0.009
Topic 2 0.070 0.000 0.004 0.002
Topic 3 0.002 0.004 0.001 0.011
Topic K 0.001 0.006 0.021 0.000
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What does the output of topic models look like, and
how do | know what a topic means?

o The output are the parameters vy and (3 (and some incidental
parameters like , and o)

o But how might we understand those parameters substantively?
o The 7y tell you the topics of each document

o The 3 tell you what words dominate each topic, and by
looking at these words qualitatively, you can determine an
appropriate label for each topic
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To understand each topic, look at the distribution of f3;

o N is often large (vocabularies are big), so in practice we look at the
words with the most weight (the largest fBs)

TaBLe3 Topic Keywords for 42-Topic Model

Topic (Short Label)

Keys

1. Judicial Nominations

2. Constitutional

3. Campaign Finance

4. Abortion

5. Crime 1 [Violent]

6. Child Protection

7. Health 1 [Medical]

8. Social Welfare

9. Education
10. Military 1 [Manpower]
11. Military 2 [Infrastructure]
12. Intelligence
13. Crime 2 [Federal]
14. Environment 1 [Public Lands]
15. Commercial Infrastructure

nomine, confirm, nomin, circuit, hear, court, judg, judici, case, vacanc
case, court, attornei, supreme, justic, nomin, judg, m, decis, constitut
campaign, candid, elect, monei, contribut, polit, soft, ad, parti, limit
procedur, abort, babi, thi, life, doctor, human, ban, decis, or

enforc, act, crime, gun, law, victim, violenc, abus, prevent, juvenil

gun, tobacco, smoke, kid, show, firearm, crime, kill, law, school

diseas, cancer, research, health, prevent, patient, treatment, devic, food
care, health, act, home, hospit, support, children, educ, student, nurs
school, teacher, educ, student, children, test, local, learn, district, class
veteran, va, forc, militari, care, reserv, serv, men, guard, member
appropri, defens, forc, report, request, confer, guard, depart, fund, project
intellig, homeland, commiss, depart, agenc, director, secur, base, defens
act, inform, enforc, record, law, court, section, crimin, internet, investig
land, water, park, act, river, natur, wildlif, area, conserv, forest

small, busi, act, highwai, transport, internet, loan, credit, local, capit
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To understand each topic, look at the distribution of vy,

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred
topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found

in this article.
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Other topic models

o Correlated topic models (Blei and Lafferty 2007)

o Dynamic topic models (Quinn et al. 2010)

o Hierarchical topic models (Grimmer 2010)

o Structural topic models (Roberts et al. 2014)

o Keyword topic models (Eshima et al. Forthcoming)

o BERT topic models (Grootendorst 2022) (an large-language
model for topic classification)

Slide 14 of 14



	Topic Models

