
Topic Models

Political Analysis of Social Media Data

Topic Models

Instructor: Gregory Eady
Office: 18.2.10

Office hours: Fridays 13-15

Slide 1 of 14



Topic Models

Today

❍ Topic models

❍ Video lectures & exercises
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Recall text-as-data pre-processing choices:

1. Punctuation: Spaces & special characters (e.g. $, %, &)

2. Numbers: Sometimes informative (e.g. Section 423 of the
U.S. Code); other times not

3. Lowercasing: Sometimes informative (e.g. “Trump” the
president, versus “trump” the verb)

4. Stopwords: Common function words, e.g. “the,” “and”, “it,”
and “she,” or domain-specific ones “congress”
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Recall text-as-data pre-processing choices:

5. Stemming: Reducing a word to its root form

‚ e.g. “party,” “partying,” and “parties” all share a common
stem “parti”

6. n-Grams: treat multiple words as single “tokens”. As
bi-grams (2) or tri-grams (3), or more

‚ e.g. “national” means something much different when
combined with “debt” or “defense”, (“national defense” versus
“national debt”)

7. Infrequently used terms: Remove very infrequent or
frequent terms (e.g. remove words that occur in fewer than
0.5-1% of documents)
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Topic models:

❍ An unsupervised model for discovering the latent topics /
themes in a set of documents

❍ “Unsupervised” because we don’t have any labels for the
topics of any documents

❍ Thus we only need the text of the documents themselves i.e.
no human annotators or pre-existing labels (similar to
unsupervised models for ideology)
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Topic models:

❍ Classical topic model is called a Latent Dirichlet Allocation
(LDA) model

‚ “latent” because the topics are unobservable (i.e. unlabeled)
‚ “dirichlet” because the model relies on a Dirichlet distribution

❍ Is a “generative model” in the sense that we posit a simple
process by which documents are created, and set up a model
to capture that process

❍ M documents, where documents are distributions over topics.

❍ K topics, where topics are distributions over words.
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How do LDA models assume documents are generated?

❍ Are K topics. Are M documents. Are N words.

❍ Choose γm „ Dirichlet(αγ)

‚ These are just the distribution of topics in each document m
(e.g. γm=1 = [0.25, 0.7, 0.05])

❍ Choose βk „ Dirichlet(αβ)

‚ Distribution of words in a topic k (e.g. γk=1 = [“refugee” =
0.15, “migrant” = 0.1, “taxes” = 0, ...])

❍ Now, we’ll fill up each document with words...

‚ Pick a topic from the document’s topic distribution:
zi „ Multinomial(γm)

‚ Pick a word from that topic’s word distribution:
wi „ Multinomial(βk=zi )
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What parameters do we actually care about?

1. γ: a M ˆ K matrix where columns are the proportions of each topic in
each document:

Topic 1 Topic 2 Topic 3 ... Topic K
Document 1 0.02 0.00 0.10 ... 0.45
Document 2 0.00 0.03 0.90 ... 0.05
Document 3 0.20 0.01 0.01 ... 0.4
... ... ... ... ... ...
Document M 0.30 0.30 0.30 ... 0

2. β: a K ˆ N matrix where columns are the proportions of each word in
each topic:

Word 1 Word 2 Word 3 ... Word N
Topic 1 0.002 0.001 0.000 ... 0.009
Topic 2 0.070 0.000 0.004 ... 0.002
Topic 3 0.002 0.004 0.001 ... 0.011
... ... ... ... ... ...
Topic K 0.001 0.006 0.021 ... 0.000
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What does the output of topic models look like, and
how do I know what a topic means?

❍ The output are the parameters γ and β (and some incidental
parameters like αγ and αβ)

❍ But how might we understand those parameters substantively?

❍ The γ tell you the topics of each document

❍ The β tell you what words dominate each topic, and by
looking at these words qualitatively, you can determine an
appropriate label for each topic
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To understand each topic, look at the distribution of βi

❍ N is often large (vocabularies are big), so in practice we look at the
words with the most weight (the largest βs)
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To understand each topic, look at the distribution of γm
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Other topic models

❍ Correlated topic models (Blei and Lafferty 2007)

❍ Dynamic topic models (Quinn et al. 2010)

❍ Hierarchical topic models (Grimmer 2010)

❍ Structural topic models (Roberts et al. 2014)

❍ Keyword topic models (Eshima et al. Forthcoming)

❍ BERT topic models (Grootendorst 2022) (an large-language
model for topic classification)
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