
Political Analysis (2020)
vol. 28:395–411
DOI: 10.1017/pan.2019.46

Published
23 December 2019

Corresponding author
Michael Masterson

Edited by
Daniel Hopkins

c© The Author(s) 2019. Published
by Cambridge University Press
on behalf of the Society for
Political Methodology.

Using Word Order in Political Text Classification
with Long Short-termMemory Models

Charles Chang 1,2 and Michael Masterson 3

1 Postdoctoral Associate, The Council on East Asian Studies, Yale University, New Haven, CT 06511, USA
2 Postdoctoral Associate, Center on Religion and Chinese Society, Purdue University, West Lafayette, IN 47907, USA.
Email: charles.chang@yale.edu

3 PhD Candidate, Political Science at the University of Wisconsin–Madison, Madison, WI 53706, USA.
Email: masterson2@wisc.edu

Abstract
Political scientists o�en wish to classify documents based on their content to measure variables, such as
the ideology of political speeches or whether documents describe a Militarized Interstate Dispute. Simple
classifiers o�en serve well in these tasks. However, if words occurring early in a document alter themeaning
of words occurring later in the document, using a more complicated model that can incorporate these
time-dependent relationships can increase classification accuracy. Long short-termmemory (LSTM)models
are a type of neural network model designed to work with data that contains time dependencies. We
investigate the conditions under which these models are useful for political science text classification tasks
with applications to Chinese social media posts as well as US newspaper articles. We also provide guidance
for the use of LSTMmodels.

Keywords: statistical analysis of texts, machine learning, computational methods, Automated content
analysis

Political scientists have increasingly turned to computational methods to code texts as they
analyze larger and larger corpora that human coders alone could not easily handle. Inmany cases,
models that are computationally simple and easy to interpret are ideal becausemore complicated
models do not improve classification accuracy (Grimmer and Stewart 2013). However, for some
tasks, “Nonlinear methods that can make e�ective use of word order have been shown to
producemoreaccuratepredictors than the traditional”methods (JohnsonandZhang2016).While
political science researchhas, in somecases, expandedbeyondsingle-word (unigram) textmodels
(Spirling 2012; Grimmer and Stewart 2013; Lucas et al. 2015; Han et al. 2018), it has yet tomake use
of models that account for more complex time dependencies among words.
For a simpleexampleof timedependence ina text classificationcontext, imaginea researcher is

trying to categorize whether congressional representatives support a bill based on their speeches
about that bill. A method that only uses a count of the words in a speech would have a hard time
distinguishing between a congress person who said, “Some people may disagree, but I support
this bill” and another who said, “I disagree with people who support this bill.” Both sentences
contain the words “disagree” and “support.”
Even in this relatively simple example, an n-gram model, a model that counts phrases of

n-length rather than unigrams, would probably fail to classify both sentences accurately. To
accurately classify the second sentence, the n in the n-grammodel would need to be at least six.
This would include the n-gram “I disagree with people who support.” However, once n increases
much beyond 2, n-grams become too rare to train a classifier. This six-word n-gram would likely
be unique in the corpus, preventing a model from using information from other texts to draw

395

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://orcid.org/0000-0002-6518-9014
https://orcid.org/0000-0001-7546-9039
mailto:charles.chang@yale.edu
mailto:masterson2@wisc.edu
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

inferences about whether it increases or decreases the likelihood the document containing it
supports the bill.
We introduce long short-termmemory (LSTM)models, which are an especially useful recurrent

neural network (RNN) model for text analysis under the conditions we describe below. Neural
network models allow researchers to stack nonlinear equations to represent complex data
processes (for further explanation, see Section 2.2).1 Instead of memorizing set phrases, RNN
models, neural network models that incorporate information from previous steps in their
current calculation, allow researchers to directly evaluate word context by treating documents
as sequences of words and modeling the time dependencies between earlier and later words
in documents. New so�ware packages, specifically TensorFlow and Keras (Chollet et al. 2015;
Abadi et al. 2016), which are now available for both R and Python (we use Python 3), simplify the
implementation of these models.
The contributionsof this paper arebothempirical and instructional. Theempirical contribution

is to test the performance of LSTMmodels against a variety of competing models in di�erent use
cases political scientists are likely to face. Competingmodels examined here include: naive Bayes,
support vector machines (SVM), extra trees, and gradient boosting machines (GBM). To examine
di�erent use cases, we explore applications classifying both Chinese social media posts and US
newspaper articles.2 In the applications, we vary the size of the training datasets, the balance of
the categories in the data, and the length of documents in the corpus. From these applications,we
derive a set of heuristics to aid political scientist in model selection decisions. The instructional
contribution is to explain how LSTM models work and provide guidance and code templates for
their use.3

Because the optimal machine-learning model is o�en task-dependent, we can only o�er
heuristics rather thanhardand fast rules formodel selection.Weendeavor too�eruseful guidance
to researchers wishing to choose among machine-learning models while also being mindful that
results can vary for di�erent tasks. LSTM models are more likely to perform well relative to
competitors when classification is highly context-dependent, meaning that a set of keywords or
n-grams, by itself, is insu�icient to categorize texts. If taking a phrase out of context changes
its theoretical meaning, then LSTM models are more likely to perform better. For example, if
a researcher wants to categorize documents based on whether they promote discriminatory
discourse, racial slurs in documents criticizing theusageof such slurs shouldbe treateddi�erently
than the same words in documents that deploy the words as slurs.
Before using an LSTM model, researchers need a dataset with thousands of texts from the

categories they want to classify already labeled by humans. In general, the more data, the more
likely the LSTM model will outperform other models. LSTM models are well suited to both short
and long texts, although these two cases may call for di�erent preprocessing procedures. The
more evenly distributed the categories to be classified in the data are, that is, the more balanced
the data is among the categories, the better are the LSTM models to likely perform relative to
alternatives. LSTMmodels aremore appropriate when the researcher wants to accurately classify
documents rather than to understand why documents are placed in particular categories.
This paper proceeds as follows. The first section lays out the uses of text classification in

political science. The second section explains what neural network models are and how they
work, building up to an explanation of LSTMmodels. The third section contains several empirical
applications that compare the performance of LSTM models against alternatives and uses these

1 See Beck, King, and Zeng (2000) for an application of neural network models to conflict data.
2 The US newspapers application comes from Baum, Cohen, and Zhukov (2018).
3 See Appendix Section 5.7 for detailed advice about implementing an LSTMmodel, and see Chang andMasterson (2019) for
code templates and replication materials.

Charles Chang and Michael Masterson ` Political Analysis 396

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

applications to derive lessons for the use of LSTM models in political science. The final section
o�ers concluding comments.

1 Text Categorization in Political Science
Political scientists o�enwant to classify texts into categories based on their content. For example,
a researcher might want to classify congressional speeches based on their ideological content
(Diermeier et al. 2012), classify whether documents describe a Militarized Interstate Dispute
(D’Orazio et al. 2014), classify whether political speeches invoke nationalist themes, or classify
newsarticleson theColdWarbasedon thenarratives theyuse (Krebs2015).Once theclassification
of a document is known, its class can be used as a variable in later analysis.
Supervisedmachine learning is appropriate for thesekindsof classification tasks. In supervised

learning, a subset of the data alongwith its “true” prediction is fed to themodel, so themodel can
learn what predictors (in the case of text classification, predictors are the words of a document
and the order they appear in) correspond to what predictions (the categories the documents are
beingclassified into). This subsetof thedata is referred toas the “training set.” The researcher then
uses themodel to predict the class of previously unseendocuments to evaluate performance. This
previously unseen set of data that is used to evaluate the model is called the “test set.”
Sometimes writers use the phrases “validation set” and “test set” interchangeably, but with

neural networks, a validation set is distinct froma test set (Prechelt 1998). The validation set is like
the test set in that the model is not allowed to train on it, but it is used during each iteration of
training to evaluate whether themodel’s classification of out-of-sample data has improved. If the
model goes toomany steps without improving, then training will end early to prevent overfitting.
This is known as “early stopping.” Early stopping is useful because a neural network will usually
pass through all of the training data multiple times during training.
Here is an example to make this process more concrete. A political scientist wants to code

speeches by members of di�erent political parties based on whether they contain nationalist
appeals. Shewill first use human coders to code a subset of the documents as either nationalist or
not nationalist. These documents will form the training set and the validation set. Further, some
labeled documents are withheld to compose a test set. Once she settles on amodel that achieves
a desired level of accuracy, the researcher can now use this model to code documents that were
not previously labeled by human coders.We explore the kinds of text classification tasks forwhich
LSTMmodels will be most useful to political scientists.

2 LSTMModels
2.1 The Texts

Unlike most text classification models that analyze texts as a matrix of word or n-gram counts,
LSTMmodels analyze texts as a sequence of word identifiers. The corpus is converted fromwords
to unique numbers that identify each word. For example, in a corpus that contains 1000 words,
the most common wordmight be represented as 1 and the least common as 1000.
Here we show the di�erence between these ways of processing texts with an example of a

corpus composed of two sentence-long documents. The first document is “I went to the store
today,” and the second document is “You went in the store.” For a traditional model, the corpus
would be represented as a matrix of word counts with a row representing each document:

cor pus =

I in store the to today you went

1 0 1 1 1 1 0 1

0 1 1 1 0 0 1 1

Charles Chang and Michael Masterson ` Political Analysis 397

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Thismatrix does not contain information about the order thewords appear in eachdocument. For
LSTMmodels, documentsmust be represented as sequences of word identifiers. For example, the
first document might be represented with the sequence [5 1 2 3 4 6]. In this example, the second
document would be represented as [7 1 8 3 4].4

Before feeding the sequences to the LSTMmodel, all sequencesmust bemade the same length.
This is not an inherent requirement of LSTM models, but it facilitates computation during batch
training (training whenmore than one set of documents and labels are fed to themodel at once).
The most common way to get documents to a single length is to pick a maximum length that a
document is allowed to take, for example, the length of the longest document in the corpus, and
padall documents to that lengthby adding0s to the end. In our two-document corpus, the second
document would become [7 1 8 3 4 0].5

When using neural network text classification models, it is common to process the texts with
word embedding first to transform each word from a single number to a vector that contains
information about how the word is similar to other words in the corpus. This can be thought of
as a feature generation process that createsmore usable information from the data for themodel
to train on.Word embedding is not required to use LSTMmodels and is not the focus of this paper.
Herewewill provide a brief introduction toword embeddingwith further information in Appendix
Section 5.3 and sources that interested readers can pursue for further detail.6

Word embeddings learn about the similarities among words in the corpus and create vectors
of weights for eachword indicatingwhere that word falls on dimensions that are learned from the
data. These similarities are learned by using words in sentences to predict the words surrounding
them. Typically, they maximize the probability of the next wordwt , given previous words h, with
a so�max function. Score(wt , h) calculates the probability of word wt appearing in context h
(see Appendix Section 5.3 for more information about how word embeddings are trained and
computed in practice).7

P (wt `h) = so�max(score(wt , h)) =
exp{scor e(wt , h)}∑vocabulary size

word exp{score(w ′, h)}
. (1)

This probability is normalized over the score for all the other wordsw ′ in context h.

2.2 Neural Network Models
LSTMmodels takewordorder intoaccountbyallowing their interpretationof the current time step
(word in the sequence) to be dependent on previous time steps (previous words in the sequence).
The reason LSTM models take the functional form they take, as with many machine-learning
models, is that this form has been found to work well empirically (Gre� et al. 2016). This section
explains themodel’s functional form in comparison with othermachine-learningmodels. We first
introduce vanilla neural networks. Next, we build up to RNNs and finally LSTMmodels. A�erward,
we briefly discuss how training is conducted.

2.2.1 Neural Networks and Deep Learning
Neural networks may appear radically di�erent than other models at first, but “they are just
nonlinear statistical models” (Friedman, Hastie, and Tibshirani 2001, 392). All neural network
models have matrices of weights and vectors of biases as parameters that are learned from the

4 We convert texts to sequences with the Keras Tokenizer and texts to word count matrices using Scikit-learn’s
CountVectorizer.

5 The value chosen for padding, in this case 0, can be set so that the model does not interpret it as a word during training.
To do this in Keras, set the argument “mask_zero” equal to “True” for the word embedding.

6 Foracademic treatmentsofwordembedding, seeMnihandKavukcuoglu (2013),Mikolovetal. (2013a), andHanetal. (2018).
For accessible, applied introductions, see Ruizendaal (2017) and TensorFlow (2018).

7 This equation is adapted from TensorFlow (2018).

Charles Chang and Michael Masterson ` Political Analysis 398

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

data. These are analogous to the parameters in a regression (Friedman, Hastie, and Tibshirani
2001, 395).
Neural networksare composedofnonlinear equations. This nonlinearity iswhat enablesneural

networks to be used in “deep learning” where arbitrarily many equations are stacked on top of
each other to create a single model. The ability to construct a model out of a series of equations
thisway allows earlier equations in themodel to extract features that later equations train on. This
means a “major di�erence between deep learning and traditional pattern recognitionmethods is
that deep learning automatically learns features from big data, instead of adopting handcra�ed
features” (Liang et al. 2017, 5). If the equations were linear, then neural network models could
reduce to a single equation by adding up all the equations (Friedman, Hastie, and Tibshirani
2001, 394). For this reason, linear regression models can be thought of as a special case of neural
network models where σ = 1 (see Equation 2). For example, if two logistic regressions are
estimated in a rowand the prediction of the first regression is a predictor in the second regression,
this would be a simple neural network model with two equations.
A simple neural network might have a nonlinear function σ (usually the sigmoid function), a

bias scalar b , and an i -length weight vectorWi , where i indexes the sample.8

f (x) = σ(b +Wi xi). (2)

The values of the weight and bias are the parameters (θ) that the model learns over time.
Deep learningmodels are useful when the “true function” (referring to the true data generating

process or the ideal function that maximizes the classification of out-of-sample documents that
we would like our classifier to learn) is complex and nonlinear (Bengio 2009). However, when
a simpler model can accurately represent the data, deep learning models may add needless
complexity.
Even when deep learning models increase accuracy, they present the researcher with less

interpretable parameters than traditional models, creating a trade-o� between accuracy and
interpretability.9 This problem is not unique to neural networks. Other models, like SVM, share
this issue (Cortez and Embrechts 2013). Such models are best when a researcher wishes to train
a model to accurately classify texts based on a training set rather than understand why texts fall
into particular categories (Friedman, Hastie, and Tibshirani 2001, 408).

2.2.2 Recurrent Neural Networks
In equation (2), there are no terms that depend on previous steps. This means that vanilla neural
networks cannot take into account previous words when interpreting in the current word. In
contrast, RNNs have terms that depend on previous steps, which allow this (Elman 1990). The
functional form of an Elman RNN is

ht = σh (Whxt +Uhht−1 + bh)

yt = σy (Wyht + by),
(3)

where t indexes each time step, xt is aD -dimensional vector of predictors,ht is theD -dimensional
prediction of the first equation, yt is the D -dimensional prediction of the second equation, the
weightsW andU are square,D -dimensional transitionmatrices, b is aD -dimensional bias vector,
and the σ are nonlinear functions (Jernite et al. 2017, p. 3). In this model, ht is estimated first

8 For simplicity, we set the number of hidden units equal to 1 here.
9 Researchers are working to increase the interpretability of neural network parameters. See, for example, Olden and
Jackson (2002), Yosinski et al. (2015).

Charles Chang and Michael Masterson ` Political Analysis 399

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Table 1. Summary of model di�erences.

Tree-basedmodel NN RNN LSTM

Parameters interpretable Yes No No No
Short time dependence No No Yes Yes
Long time dependence No No No Yes

Note: This is not intended to imply that models with these characteristics are “better” than models without
them. NN stands for neural network. RNN stands for recurrent neural network, and LSTM stands for long
short-termmemory. Random forest is an example of a tree-basedmodel.

and then used as a predictor for yt . The subscripts h and y indicate the equation the components
belongs to. In the case of text analysis, each word or word vector is a time step.
RNNs allow time dependencies to be addressed to some extent. However, RNNs have di�iculty

separating signal context from noise context. Far away words are only sometimes helpful in
interpreting the currentword. Thismakes traditional RNNs impractical to train. Interested readers
should see Hochreiter (1998).

2.2.3 LSTMModels
To address this, computer scientists added a series of equations to RNN models that store
information for evaluating long timedependencies anddeterminehow this information shouldbe
updated. This resulted in LSTMmodels (Hochreiter and Schmidhuber 1997a; Gers, Schmidhuber,
and Cummins 2000). What information is stored to evaluate long time dependencies andwhether
or not this information is updated are determined by parameters the model learns from the data.
The equations in LSTM models are estimated in a sequence with the predictions of previous
equations becoming predictors in subsequent equations. This is similar to the way prediction ht
becomes a predictor in the equation to predict yt in the RNNmodel in the previous section.
The following equations show the prediction process for LSTM models for every time step t .

We give the dimensions of each term below. These dimensions depend on the dimensions of
the predictors D and the number of hidden units H , which is a hyperparameter.10 xt is a D -
dimensional vector of predictors,W is aD ×H weightmatrix,U , andV are square,H -dimensional
weightmatrices, and b is anH -dimensional bias vector with subscripts indicating the equation to
which they correspond. The le�-hand sideof eachequation is anH -dimensional prediction vector.
σ indicates the sigmoid function.11 Keep in mind that the weights and biases are the trainable
parameters or the parameters that take values thatmaximize accuracy based on the training data.
The first equation makes a prediction, gt , which can be conceptualized as a weighted sum

of information the model takes in from the current word or word vector xt and the previous
prediction of the final equation in the model ht−1.

gt = σ(Wg xt +Ught−1 + bg). (4)

The sigmoid function ensures that the values of this initial prediction is between 0 and 1. These
values are used in equation (7) to weigh howmuch information from the current word should be
stored for use in making predictions based on future words. A 0 means no new information will
be stored, and a 1 means all of the new information will be stored. The weights and bias vector in
this equation allow themodel to use information from the training set to decide which predictors
are important for classification and, hence, should receive a higher weight. The termUiht−1 is the

10 For simplicity, we assume the batch size is 1.
11 Theseequationsareadapted fromHochreiter andSchmidhuber (1997a), Gers, Schmidhuber, andCummins (2000), Theano
Development Team (2017).

Charles Chang and Michael Masterson ` Political Analysis 400

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

previous prediction ht−1 weighted by the weight matrixUi . In this way, the weight that the model
puts on a predictor, in the case of text analysis a word or word vector, depends on how themodel
evaluated the previous predictor.
Next, themodel evaluates how the information stored tomodel long timedependencieswould

change based on the current predictor and the previous prediction:

C̃t = tanh(Wcxt +Ucht−1 + bc). (5)

Next the model evaluates whether and howmuch information previously stored to evaluate long
time dependencies should be erased or ‘forgotten’:

ft = σ(Wf xt +Uf ht−1 + bf). (6)

This value along with the prediction of equations (4) and (5) is used in the following equation that
computes the new value of the information stored to evaluate long time dependencies. In this
way, the model will decide to retain or discard information from the past based on the values
of the weigh matricesWf and Uf as well as the bias bf . Information for evaluating long time
dependencies might be maintained, in part or whole, all the way to the end of a document, or
it might be forgotten immediately depending on the values of these parameters.
Given the values of gt (equation (4)), C̃t (equation (5)), and ft (equation (6)), the model

computes Ct , which is the new state of the information stored to evaluate long time
dependencies:

Ct = gt ◦ C̃t + ft ◦ Ct−1.
12 (7)

The information used to evaluate long time dependencies,Ct , is used to calculate the prediction
below. Further, this information becomes Ct−1 in the next step. In this way, the model uses the
information it has decided is useful to retain from previous steps in the calculation of the current
prediction.
Given the new information about long time dependencies in the data,Ct , themodel computes

o t :

o t = σ(Woxt +Uoht−1 +VoCt + bo). (8)

This value places a weight on the final prediction. It serves a role similar to the prediction of
equation (4), controlling the flow of information through the model.
Finally, the model calculates the final prediction as a function of the o t from equation (8) and

the value of information stored to evaluate long time dependencies,Ct , from equation (7):

ht = o t ◦ tanh(Ct). (9)

Neural network models are usually adapted to the problem they are applied to. To produce
a single prediction between 0 and 1 for each text, our model ends in a logistic regression. See
Appendix Section 5.5 for the full models we use. In practice, researchers o�en use bidirectional
models that contain two LSTM models (Graves and Schmidhuber 2005). One model reads the
documents forward and the other reads the documents backwards. Thesemodels can pick up on
di�erent predictors and sometimes improve classification. The predictions of these models are
then concatenated and sent to the final prediction equation, in our case, a logistic regression.

12 “◦” in these sets of equations denotes the Hadamard product rather than the dot product.

Charles Chang and Michael Masterson ` Political Analysis 401

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

2.2.4 Training
The parameters begin at random values. To minimize misclassifications, neural network models
iteratively adjust the parameters slightly and then check for improvement. These adjustments
improve the fit if misclassifications decrease (for more information, see Appendix Section 5.2).
How much the parameters are adjusted at each step is determined by the learning rate, which
is a parameter set by the researcher (see Appendix Section 5.7.1 for advice on optimizing the
hyperparameters of neural network models). An analogy can be drawn to the expectation–
maximizationalgorithmthat is familiar topolitical scientists frommaximumlikelihoodestimation.
Both algorithms initialize the parameters at random values and then repeatedly iterate using
di�erent estimates of the parameters until convergence.

3 Applications
3.1 Purpose

We use four applications to show LSTMmodels’ performance in di�erent contexts. Because LSTM
models di�er in more than one way from alternative models, it is di�icult to pinpoint exactlywhy
the LSTMmodel performs better in any one task. Our purpose is instead to show the kinds of tasks
where LSTM models perform well. The first three applications use a dataset of posts from the
Chinese website Weibo, which is similar to Twitter. These posts are classified as either political
or not political. The first application shows that in a large balanced dataset, ideal conditions
for any classifier, LSTM models can outperform the alternatives. The second application shows
that even as the size of this dataset is decreased by randomly sampling subsets of it, the LSTM
model continues to perform well. The third shows that if we make this dataset unbalanced, the
performance of the LSTMmodel decreases relative to competitors.
The fourth application compares an LSTM model with the SVM classifier deployed in another

political science paper that classifies US newspaper articles based on whether they contain rape
culture, specifically rape culture in the form of expressing empathy for the person accused of
rape (Baum, Cohen, and Zhukov 2018). The point of this application is to show that LSTMmodels
can sometimes improve classification accuracy under nonideal conditions where the classes are
severely imbalanced. The purpose of this application is not to criticize original paper.

3.2 Classifying Weibo Posts
We evaluate how models perform classifying a subset of posts we collected from June 25, 2014
through June 15, 2015 that were hand-coded as either containing political content or not (see
Appendix Section 5.1 for a full explanation of data collection, coding rules, and selection of the
subset). The subset is balanced, containing 5,346 political posts and 5,345 nonpolitical posts.
These posts are selected fromamuch larger dataset of posts.While the true prevalence of political
posts is unknown, we estimate that less than 5% of the posts we originally collected are political.
We select several alternative document classifiers to compare our LSTM model against.13 To

get comparable accuracy scores, we focus only on models that assign an individual classification
for each document. The first method we compare with is SVM, which is “the most widely used
(and arguably the best) of the existingmethods” (Hopkins and King 2010, 239).14We also compare
against both multinomial naive Bayes and Bernoulli naive Bayes, which are commonly used
as baselines to compare classifiers against (D’Orazio et al. 2014, 232–233). Finally, we compare
against the extra-trees classifier, which is similar to the random forest classifier but is more
computationally e�icient and, in some cases, more accurate (Geurts, Ernst, and Wehenkel 2006).
Extra-trees models are a useful comparison both because they are nonlinear and because they fit

13 To implement each of these competing models as well as the vectorizers we combine with them, we use Scikit-learn
(Pedregosa et al. 2011).

14 We use linear kernel SVM following D’Orazio et al. (2014, 235).

Charles Chang and Michael Masterson ` Political Analysis 402

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

multiple randomly chosen models to the data, allowing them to capture complexity. This makes
it a potential nonneural network model that researchers could use to classify documents that
contain complex and nonlinear predictors.
We also combine these models, in some cases, with one of two di�erent vectorizers in an

attempt to improve their performance. The first is Word2vec (W2V). W2V is a type of word
embedding that changes a corpus of words from unique identifiers that contain no information
about how words relate to each other into a vector space where similar words are closer to each
other.15 The second is term frequency–inverse document frequency (TFIDF). TFIDF gives more
weight to words that are rare in the corpus but common in a particular document and, hence,
more likely to be distinguishing.16

We do not compare against other variants of LSTM models because the largest study of LSTM
model performance concluded that “The most commonly used LSTM architecture (vanilla LSTM)
performs reasonably well on various datasets and using any of eight possible modifications
does not significantly improve the LSTM performance” (Gre� et al. 2016). We do not compare
against RNNs because LSTM models converge more quickly (Hochreiter 1998), which eliminates
what one might expect to be the gain from using the simpler RNN model. Further, LSTM models
are preferable over RNNs for “nontrivial tasks”(Hochreiter and Schmidhuber 1997b, 478), where
a trivial task is a problem that is quickly solvable by random search, making deep learning
unnecessary in the first place.17 Finally, we do not compare against MLP because, at least for
classification tasks, MLP tends to o�er no advantage over SVM (Osowski, Siwek, and Markiewicz
2004).18

To express uncertainty around our accuracy scores, we draw five training and test sets from
the data for each model and report the mean, minimum, and maximum test accuracy scores.19

The train/test splits are stratified to ensure class balance. Traditional 95% confidence intervals
cannot be used because supervised learning models like SVM and LSTM models are not founded
on probability distributions (Hopkins and King 2010, 239). The size of the training dataset for each
model in each test is four-fi�hs of the full dataset or 8,552 posts. The remaining 2,139 posts are
used as the test set.
For the LSTM models, one-tenth of the training set is split o� to use as a validation set (see

Section 1 on why validation is di�erent with neural network models). Some readers might worry
that our test is not a fair comparison because the LSTM model uses a validation set and the
others do not. However, the LSTM model does not train on the validation set (James et al. 2013,
178). We independently tune the hyperparameters of all the models using cross-validation. In
this way, the competing models also get the advantage of using the full dataset to set their
hyperparameters, so cross-validation to optimize the hyperparameters of competingmodels with
tunable hyperparameters takes the place of a validation set for these models (James et al. 2013,
178). If the LSTMmodel forgoes a validation set and is set to stop a�er 11 passes through the data,
the results are substantially the same (see Appendix Section 5.6).
We preprocess the data in the same way for all the models. The classifiers are classifying

posts in the original Chinese, which we segment using Jieba (Sun 2015). For this application,

15 A full explanation of W2V is beyond the scope of the paper, but see the discussion of embeddings in Section 2.1 and
Appendix Section 5.3. For an accessible introduction to W2V, see (Google 2017). For a more detailed academic treatment,
see (Mikolov et al. 2013b).

16 A full explanation of TFIDF is beyond the scope of this article. For examples of political science papers that use TFIDF, see
Burscher, Vliegenthart, and De Vreese (2015) and Baum, Cohen, and Zhukov (2018).

17 For a more recent comparison of LSTM vs. RNN performance, see (Chung et al. 2014).
18 Of course there may be exceptions to this because the performance of models varies with tasks, but the goal of this paper
is to introduce LSTMmodels to political science and make general statements about how they tend to perform in various
tasks comparedwith competingmodels rather thandefinitivelydemonstrating that LSTMmodelsdominateall conceivable
competing models in any single application.

19 For the traditional models this is done with 5-fold cross-validation. Because the LSTMmodel needs a third dataset for the
validation set, each dataset drawn for the LSTMmodel is a random stratified draw from the data.

Charles Chang and Michael Masterson ` Political Analysis 403

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Figure 1. Classifying political vs. nonpolitical Weibo posts.

we find that all the methods, not just LSTM, perform better when stop words, words that are
so common that they are usually considered not meaningful for classification, and punctuation
are not removed. This might be because social media posts are short, so the further removal of
information decreases accuracy. For this reason, we do not remove stop words or punctuation.
Chinese has no conjugation, so stemming (taking words down to their root so that, for an English
example, “run,” “running,” and “ran” count as the same word) is not necessary.
As shown inFigure 1, themeanaccuracyof theLSTMmodel isover2.53percentagepointshigher

than the next-best model (SVM TFIDF). A 2.5 percentage point increase may not sound like much,
but this is actually quite a large di�erence. To put it into perspective, the next-best model’s mean
accuracy is only about 1.2 percentage points higher than the best performing of the naive Bayes
models. This means the improvement from switching from SVM TFIDF to an LSTM model for this
dataset is more than double the improvement from switching to SVM TFIDF from Bernoulli naive
Bayes, which is typically used as a baseline model. The LSTMmodel consistently performs better
across every train and test set drawn. The worst performing LSTM test is still over 2 percentage
pointsmore accurate than that of the best performing test for SVMTFIDF. Table 2 shows how these
models performonprecision (identifying nonpolitical posts as not political) and recall (identifying
political posts as political). The LSTMmodel outperforms the other models on both metrics.
Here are two examples of posts from the data where word context is important for correct

classification, and SVM TFIDF incorrectly classifies the post while LSTM classifies it correctly.
The first post appears to be about friendship, but in the context of the Asia-Pacific Economic
Cooperation (APEC) conference leaving Beijing, it is actually pointing out that the government
manipulates pollution levels to make China look good to international audiences but allows
pollution to return once the world’s attention is elsewhere.

Charles Chang and Michael Masterson ` Political Analysis 404

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Table 2. Precision and recall.

Model Precision Recall

LSTM 0.914 0.913
(0.011) (0.014)

SVM TFIDF 0.887 0.887
(0.006) (0.006)

SVM 0.882 0.881
(0.005) (0.005)

Bernoulli naive Bayes 0.874 0.874
(0.003) (0.003)

Multinomial naive Bayes TFIDF 0.874 0.873
(0.005) (0.006)

Multinomial naive Bayes 0.873 0.871
(0.007) (0.007)

Extra-trees W2V 0.829 0.829
(0.008) (0.008)

Extra-trees W2V TFIDF 0.821 0.820
(0.007) (0.007)

Note: The mean scores from the five train and test set draws are shown with standard errors in parentheses.
Precision measures whether the models identify nonpolitical posts correctly, and recall measures whether
the model identifies political posts correctly.

‘APEC’ has gone, and our old friends [air pollution] have returned to us. [Our old friends]
never abandon us or give us up. Such friends are absolutely loyal.
‘APEC’ , ,

The second post is actually non-political. However, because “climb onto the wall” () o�en
means bypassing the Great Firewall, SVM TFIDF classifies it as political, even though the phase
does not have that meaning in this context.

A while ago, I suddenly wanted to go to the Internet cafe to go online. I went to the school
wall and climbed onto thewall. Surprisingly, just when I climbed up, a school security guard
came and called tome in the distance. I said, “Is it possible to come in to the school and find
someone?” Security: “No! Get out right away!” Then I got out. . .

, , , , :
“ ” : “ ”

3.2.1 Computation Time
Another important performance metric is speed. LSTM models do take longer than traditional
models to train. In this application, our LSTM model takes 2 minutes and 51 seconds to train and
test for one draw from the data. This is when running the model on a desktop with an NVIDIA
GeForce GTX 760 GPU and 7 gigabytes of RAM. This is a relatively old GPU that has exactly the
minimum computing power required to run NVIDIA’s Deep Neural Network library (see Appendix
Section 5.7.4). If the model is instead run on the Intel Core i5 CPU of one of the authors’ laptops
with 3 gigabytes of RAM, it takes 5 minutes and 40 seconds.20 In comparison, SVM takes about 20
seconds to train and test for one draw from the data on the laptop. This time di�erence has the
biggest impact when tuning hyperparameters because the researcher will need to run the model
repeatedlywithdi�erentparameters. Thegoodnews is that researchers canautomate thisprocess
and perform other tasks while tuning takes place. We have provided scripts to facilitate this.21

20 This CPU has four cores, but because of memory limitations, all models run on the CPU are run on a single core.
21 Chang and Masterson (2019).

Charles Chang and Michael Masterson ` Political Analysis 405

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

3.3 Classifying with Small Samples
In this section, we test how the two models that performed best on the full dataset, the LSTM
model and the SVM TFIDF model, perform on random, balanced subsamples of the data. The
purpose of this is to examine how LSTMmodel performance changes as the size of the training set
shrinks. Goodperformancewith relatively small training samples is important for political science
uses because it is expensive and time consuming to code large training datasets. We start with
a randomly selected balanced training dataset of 6,000 posts taken from the original data. We
then decrease the size of the training dataset by intervals of 500. We also include a test where
the training dataset only contains 100 posts. The models are evaluated on a randomly selected
balanced test set of 1,000 posts. We repeat this process five times for each training dataset size to
getminimum,maximum, andmean scores. The LSTMmodel uses a validation set of one-tenth the
size of the training set.

Figure 2. Accuracy with changing sample sizes.

As shown in Figure 2, the LSTM model continues to achieve higher mean scores than the SVM
TFIDF model until the size of the training dataset drops below 2,500 posts. While collecting large
training sets can be costly,22 LSTM will generally provide greater returns to researchers willing to
pay this cost because they hit the point of diminishing returns from added data more slowly.

3.4 Classifying with Unbalanced Data
Political scientists o�en work with unbalanced data, meaning data where one category is more
common than another. To compare performance with unbalanced data, we add additional

22 See, however, Carlson and Montgomery (2017), Benoit et al. (2016) for advice on using crowdsourcing to facilitate this
process.

Charles Chang and Michael Masterson ` Political Analysis 406

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Table 3. Unbalanced Weibo results.

Metric LSTM SVM GBM

Accuracy 0.993 0.991 0.921
(0.001) (0.000) (0.041)

Precision 0.913 0.964 0.649
(0.012) (0.002) (0.276)

Recall 0.960 0.993 0.639
(0.007) (0.001) (0.213)

Penalized Yes Yes No

Note: The mean scores from five train and test set draws are shown with standard errors in parentheses.
Precision measures whether the models identify nonpolitical posts correctly, and recall measures whether
the model identifies political posts correctly.

nonpolitical posts to create a dataset with 45,000 nonpolitical posts and 5,346 (about 10% of the
total) political posts.23 Unbalanced sets like this aredi�icult formodels to trainonbecausemodels
will tend to classify every post as not political and get 90% accuracy.
One way to deal with this challenge is to penalize incorrect classifications of the less common

categorymore heavily. Another way to deal with class unbalance is to use gradient boosting. GBM
are a tree-based model that uses gradient boosting. Interested readers should see Montgomery
and Olivella (2018). Because GBM train sequentially, they are able to devote more trees at
each step to the class that they classify incorrectly (Weiss 2004). Other techniques for dealing
with unbalanced data include undersampling the more common class and synthetic minority
oversampling (SMOTE). Thesemethods are beyond the scope of this paper, but interested readers
should see Liu, Wu, and Zhou (2009) on undersampling and Chawla et al. (2002) and Fernández
et al. (2018) on SMOTE. Here we compare an LSTM model and an SVM model, which penalize
misclassification in inverse proportional to the frequency of categories in the data, with GBM.
As shown in Table 3, both SVM and LSTM performwell with accuracy of over 99% and precision

and recall over 90%. However, SVM notably outperforms LSTM on precision and recall. As the
application in Section 3.5 reveals, SVMdoes not always outperformLSTMonunbalanceddatasets,
but it is reasonable to expect that unbalanced data will increase the performance of SVM in the
comparisonwith LSTM, holding the task constant. This is because neural networkmodels perform
best on tasks with a “high signal-to-noise ratio” (Friedman, Hastie, and Tibshirani 2001, 408). It is
tempting to dismiss GBM’s performance as poor, but it is classifying over 90% of posts correctly
with balanced accuracy (meaning precision and recall are approximately equal). This improves on
models not adjusted to handle unbalanced data, which would achieve similar levels of accuracy
but with near 0 recall.

3.5 Classifying US Newspaper Articles
Baum, Cohen, and Zhukov (2018) train an SVMTFIDF classifier to classify US newspaper articles on
various indicators of rape culture. We choose the indicator, empathy for the accused, where their
classifier performs the least well and examine whether an LSTM model can o�er improvement.
We suspect that contextual information may improve classification of this variable because it is
important to knowwho the article is expressing empathy for, the victim or the accused.
We follow the practices of the original authors by removing stop words, punctuation, and

stemming.24 We also follow the original authors in using the “pooled” dataset that contains

23 However, this sample is still more balanced than full sample of Weibo posts we collect, which we estimate to contain less
than 5% political posts.

24 We use the Natural Language Toolkit package to remove stop words and tokenize the newspaper articles (Bird, Klein, and
Loper 2009). We use the SnowballStemmer from this package to stem English words.

Charles Chang and Michael Masterson ` Political Analysis 407

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Table 4. Comparing newspaper classifiers.

Model Truncation Accuracy AUC

LSTM 100 words 0.852 0.986
0.838–0.870 0.985–0.986

LSTM 339 words 0.863 0.985
0.851–0.872 0.983–0.985

SVM TFIDF NA 0.804 0.750
0.802–0.807 0.720–0.770

Note: Themean score from the train and test set draws are shownwith the range between the best andworst
scores below.

multiple entries for articles where their human coders disagree.25 This dataset contains 21,911
human-labeled articles.
For all of our LSTM models on Weibo posts, we preserved the length of every post by padding

them to the length of the longest post. While this is possible to do for longer documents, it
is impractical in terms of computation time and resource demands (the longest article is over
3,000 words). For the LSTM model, we first try truncating the post to the first 100 words to see
if performance is satisfactory. To address the possible concern that this truncationmay somehow
bias the comparison in favor of LSTM, we show that the results are essentially unchanged if
truncation is extended to the mean length of newspaper articles in the dataset (339 words). The
results for SVM TFIDF we report come directly from Baum, Cohen, and Zhukov (2018) where SVM
TFIDF was allowed to train on the entire length of the articles.
Baum, Cohen, and Zhukov (2018) do not report precision and recall, but they report out-of-

sample accuracy as well as area under the receiver operating characteristic (ROC) curve, so we
compare these two metrics.26 Baum, Cohen, and Zhukov (2018) report results both for 10-fold
cross-validationaswell as 10 trials of randomre-samplingwitha75/25 train/test split.Wecompare
against their classifier’s 10-fold cross-validation results, which are its best. However, for our own
model, we use random re-sampling with a 75/25 train/test split, which makes the training set of
our model smaller than that of the model we are comparing against. We do not use a validation
set in this application.
The categories are unbalanced. Only about 1 in every 6.89 articles expresses empathy for the

accused. For this reason, it is important to focus on area under the curve (AUC) in addition to
accuracy because a model could predict that every article is a 0 (contains no empathy for the
accused) and achieve out-of-sample accuracy of about 88%. To prevent our model from doing
this, we penalize misclassification in inverse proportion to the observed class frequencies.27

The results in Table 4 show that the LSTM model outperforms the SVM TFIDF model from the
original paper by about 5 percentage points in accuracy (6 points when truncation is extended to
339 words). The model improves the AUC by approximately 23 percentage points. This indicates
thatmanymoreof the truepositives are correctly classified as containing empathy for the accused
by the LSTM model. We speculate that the size of the improvement is larger here than in the
Weibo post application because of the greater importance of context for understanding whether
an article is expressing empathy and, if so, forwhomthenewspaper article is empathizing. Parsing
empathy may even require going a sentence or two back in the text, making it a good case for

25 In the original paper, Baum, Cohen, and Zhukov (2018) take themedian classification as the truth for these cases. We take
the mode because otherwise there are 12 cases where articles receive a classification of 0.5 rather than a 1 or a 0, which is
not compatible with the binary loss function we use.

26 We use TensorFlow’s streaming_auc function to calculate our model’s AUC performance. This approximates the AUC with
a Riemann sum.

27 Baum, Cohen, and Zhukov (2018) do not mention whether they adjust for class imbalance, but our own testing of SVM
TFIDFmodels on this dataset suggest that they do because without adjustment, thesemodels will also predict 0 for every
example (results available from authors upon request).

Charles Chang and Michael Masterson ` Political Analysis 408

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

applying an LSTM model. LSTM models are able to parse features like this because they extract
features the model has learned are useful for interpreting words or word vectors that may occur
later in documents (see Section 2.2). This application also shows that, at least for some cases of
unbalanced data, LSTM can outperform SVM TFIDF.

4 Conclusion
LSTM models perform best relative to traditional models in applications with large training sets
where words within documents have complex context-dependent relationships. LSTM models
perform less well relative to traditional models as the amount of unbalance among categories
in the data increases. LSTMmodels are adaptable to a wide variety of tasks and can classify texts
on any basis the researcher desires provided they have adequate training data. Our examples are
binary, mutually exclusive tasks for the sake of simplicity, but LSTMmodels can classify texts into
more than two categories as well as in situations where categories are not mutually exclusive.
Further, LSTM models can classify texts regardless of their language. We hope that the guidance
we provide about the use of these models along with our code templates facilitates the use of
these models in future political science applications.
Future work should continue to explore the relatively untapped political science potential of

LSTM models. For example, LSTM models have applications for time-series forecasting that may
prove useful for political scientists working with event data (Maknickiene and Maknickas 2012).
This is because the characteristics that allow LSTMmodels to learn long time dependencies, such
as the relationship between the words at the beginning of a document and the words at the end
of a document, can be applied to time-series datawhere predictors from the past have systematic
yet complex relationships with events in the future.

Acknowledgements
The authors contributed equally. We thank Ling, Qingwei, Tami, and Wenchang for their ever-
awesome research assistance. Thanks to Sarah Bouchat, Devin Judge-Lord, Melanie Manion,
Eleanor Powell, Molly Roberts, Alex Tahk, Samantha Vortherms, Zach Warner, Jessica Weeks, and
Chagai Weiss for helpful comments on dra�s of this paper.

Supplementarymaterials
For supplementary materials accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.46.

References
Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, and M. Devin
et al. 2016. “Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.” Preprint,
arXiv:1603.04467.

Baum, M. A., D. K. Cohen, and Y. M. Zhukov. 2018. “Does Rape Culture Predict Rape? Evidence from U.S.
Newspapers, 2000–2013.” Quarterly Journal of Political Science (QJPS) 13(3):263–289.

Beck, N., G. King, and L. Zeng. 2000. “Improving Quantitative Studies of International Conflict:
A Conjecture.” The American Political Science Review 94(1):21–35.

Bengio, Y. 2009. “Learning Deep Architectures for AI.” Foundations and Trends in Machine Learning 2(1):1–127.
Benoit, K., D. Conway, B. E. Lauderdale, M. Laver, and S. Mikhaylov. 2016. “Crowd-Sourced Text Analysis:
Reproducible and Agile Production of Political Data.” American Political Science Review 110(2):278–295.

Bird, S., E. Klein, and E. Loper. 2009. Natural Language Processing with Python. Sebastopol, CA: O’Reilly
Media, Inc.

Burscher, B., R. Vliegenthart, and C. H. De Vreese. 2015. “Using Supervised Machine Learning to Code Policy
Issues: Can Classifiers Generalize across Contexts?” The ANNALS of the American Academy of Political and
Social Science 659(1):122–131.

Carlson, D., and J. M. Montgomery. 2017. “A Pairwise Comparison Framework for Fast, Flexible, and Reliable
Human Coding of Political Texts.” American Political Science Review 111(4):835–843.

Charles Chang and Michael Masterson ` Political Analysis 409

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://doi.org/10.1017/pan.2019.46
http://www.arxiv.org/abs/1603.04467
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Chang, C., and M. Masterson. 2019. “Replication Data for: Using Word Order in Political Text Classification
with Long Short-TermMemory Models.” https://doi.org/10.7910/DVN/MRVKIR, Harvard Dataverse, V1.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE: Synthetic Minority
Over-Sampling Technique.” Journal of Artificial Intelligence Research 16:321–357.

Chollet, F. et al. 2015. Keras. GitHub. https://github.com/fchollet/keras.
Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2014. “Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling.” Preprint, arXiv:1412.3555.

Cortez, P., and M. J. Embrechts. 2013. “Using Sensitivity Analysis and Visualization Techniques to Open
Black Box Data Mining Models.” Information Sciences 225:1–17.

Diermeier, D., J.-F. Godbout, B. Yu, and S. Kaufmann. 2012. “Language and Ideology in Congress.” British
Journal of Political Science 42(01):31–55.

D’Orazio, V., S. T. Landis, G. Palmer, and P. Schrodt. 2014. “Separating the Wheat from the Cha�: Applications
of Automated Document Classification Using Support Vector Machines.” Political Analysis 22(2):224–242.

Elman, J. 1990. “Finding Structure in Time.” Cognitive Science 14(2):179–211.
Fernández, A., S. Garcia, F. Herrera, and N. V. Chawla. 2018. “Smote for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary.” Journal of Artificial Intelligence Research
61:863–905.

Friedman, J., T. Hastie, and R. Tibshirani. 2001. The Elements of Statistical Learning, vol. 1 (Springer Series in
Statistics). New York: Springer.

Gers, F. A., J. Schmidhuber, and F. Cummins. 2000. “Learning to forget: Continual prediction with LSTM.”
Neural Comput. 12(10):2451–2471.

Geurts, P., D. Ernst, and L. Wehenkel. 2006. “Extremely randomized trees.”Machine Learning 63(1):3–42.
Google. 2017. Vector Representation of Words. www.tensorflow.org/tutorials/word2vec.
Graves, A., and J. Schmidhuber. 2005. “Framewise Phoneme Classification With Bidirectional LSTM and
Other Neural Network Architectures.” Neural Networks 18(5-6):602–610.

Gre�, K., R. K. Srivastava, Jan Koutník, B. R. Steunebrink, and J. Schmidhuber. 2016. “LSTM: A Search Space
Odyssey.” IEEE Transactions on Neural Networks and Learning Systems 28(10):2222–2232.

Grimmer, J., and B. M. Stewart. 2013. “Text as Data: The Promise and Pitfalls of Automatic Content Analysis
Methods for Political Texts.” Political Analysis 21(03):267–297.

Han, R., M. Gill, A. Spirling, and K. Cho. 2018. “Conditional Word Embedding and Hypothesis Testing via
Bayes-by-Backprop.” Working Paper.

Hochreiter, S. 1998. “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem
Solutions.” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(02):107–116.

Hochreiter, S., and J. Schmidhuber. 1997a. “Long Short-TermMemory.” Neural Computation 9(8):1735–1780.
Hochreiter, S., and J. Schmidhuber. 1997b. “LSTM Can Solve Hard Long Time Lag Problems.” In Advances in
Neural Information Processing Systems, edited by M. C. Mozer, M. I. Jordan, and T. Petsche, 473–479.
Cambridge, MA: MIT Press.

Hopkins, D. J., and G. King. 2010. “A Method of Automated Nonparametric Content Analysis for Social
Science.” American Journal of Political Science 54(1):229–247.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning, vol. 112.
New York: Springer.

Jernite, Y., E. Grave, A. Joulin, and T. Mikolov. 2017. “Variable Computation in Recurrent Neural Networks.”
In 5th International Conference on Learning Representations, ICLR 2017.

Johnson, R., and T. Zhang. 2016.“Supervised and Semi-Supervised Text Categorization using LSTM for
Region Embeddings.” Preprint, arXiv:1602.02373.

Krebs, R. R. 2015. “How Dominant Narratives Rise and Fall: Military Conflict, Politics, and the Cold War
Consensus.” International Organization 69(04):809–845.

Liang, H., X. Sun, Y. Sun, and Y. Gao. 2017. “Text Feature Extraction Based on Deep Learning: A Review.”
EURASIP Journal on Wireless Communications and Networking 2017(1):211.

Liu, X., J. Wu, and Z. Zhou. 2009. “Exploratory Undersampling for Class-Imbalance Learning.” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39(2):539–550.

Lucas, C., R. A. Nielsen, M. E. Roberts, B. M. Stewart, A. Storer, and D. Tingley. 2015. “Computer-Assisted Text
Analysis for Comparative Politics.” Political Analysis 23(2):254–277.

Maknickiene, N., and A. Maknickas. 2012. Application of Neural Network for Forecasting of Exchange Rates
and Forex Trading. Vilnius Gediminas Technical University Publishing House Technika, 122–127.

Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013a, “E�icient Estimation of Word Representations in Vector
Space.” Preprint, arXiv:1301.3781.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013b. “Distributed Representations of Words
and Phrases and Their Compositionality.” In Advances in Neural Information Processing Systems, edited
by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 3111–3119. Cambridge, MA:
MIT Press.

Charles Chang and Michael Masterson ` Political Analysis 410

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://doi.org/10.7910/DVN/MRVKIR
https://github.com/fchollet/keras
http://www.arxiv.org/abs/1412.3555
http://www.arxiv.org/abs/1602.02373
http://www.arxiv.org/abs/1301.3781
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

Mnih, A., and K. Kavukcuoglu. 2013. “Learning Word Embeddings E�iciently with Noise-Contrastive
Estimation.” In Advances in Neural Information Processing Systems, edited by C. J. C. Burges, L. Bottou, M.
Welling, Z. Ghahramani, and K. Q. Weinberger, 2265–2273. Cambridge, MA: MIT Press.

Montgomery, J. M., and S. Olivella. 2018. “Tree-Based Models for Political Science Data.” American Journal of
Political Science 62(3):729–744.

Olden, J. D., and D. A. Jackson. 2002. “Illuminating the Black Box: a Randomization Approach for
Understanding Variable Contributions in Artificial Neural Networks.” Ecological Modelling 154(1):135–150.

Osowski, S., K. Siwek, and T. Markiewicz. 2004. “Mlp and SVM Networks-a Comparative Study.” In
Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004, 37–40. Espoo, Finland:
IEEE.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. “Scikit-learn: Machine Learning in Python.” Journal of Machine Learning Research 12:2825–2830.

Prechelt, L. 1998. “Early Stopping-But When?” In Neural Networks: Tricks of the Trade, 55–69. Heidelberg:
Springer.

Ruizendaal, R. 2017. “Deep Learning #4: Why You Need to Start Using Embedding Layers” Towards Data
Science, July 17. https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12.

Spirling, A. 2012. “US Treaty Making With American Indians: Institutional Change and Relative Power,
1784–1911.” American Journal of Political Science 56(1):84–97.

Sun, J. 2015. Jieba. Version 0.38. https://github.com/fxsjy/jieba.
TensorFlow. 2018. Vector Representations of Words.
https://www.tensorflow.org/tutorials/representation/word2vec.

Theano Development Team. 2017. LSTM Networks for Sentiment Analysis.
http://deeplearning.net/tutorial/lstm.html.

Weiss, G. M. 2004. “Mining with Rarity: a Unifying Framework.” ACM Sigkdd Explorations Newsletter 6(1):7–19.
Yosinski, J., J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. 2015. “Understanding neural networks through
deep visualization.” Preprint, arXiv:1506.06579.

Charles Chang and Michael Masterson ` Political Analysis 411

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
6.

21
.2

38
.1

48
, o

n
12

 Ju
n

20
20

 a
t 1

2:
21

:4
1,

 s
ub

je
ct

 to
 th

e
Ca

m
br

id
ge

 C
or

e
te

rm
s

of
 u

se
, a

va
ila

bl
e

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/p
an

.2
01

9.
46

https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12
https://github.com/fxsjy/jieba
https://www.tensorflow.org/tutorials/representation/word2vec
http://deeplearning.net/tutorial/lstm.html
http://www.arxiv.org/abs/1506.06579
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.46

	Using Word Order in Political Text Classification with Long Short-term Memory Models
	Text Categorization in Political Science
	LSTM Models
	The Texts
	Neural Network Models
	Neural Networks and Deep Learning
	Recurrent Neural Networks
	LSTM Models
	Training

	Applications
	Purpose
	Classifying Weibo Posts
	Computation Time

	Classifying with Small Samples
	Classifying with Unbalanced Data
	Classifying US Newspaper Articles

	Conclusion
	Acknowledgements
	References

