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A few comments for Assignment 1

❍ Remember to create variables within the existing dataset.

‚ Don’t create multiple datasets, except for graphing

❍ Try to do all of your cleaning in one place

‚ In a typical project, you’d have a specific .R file just for
cleaning data

❍ For bar graphs, use percentages (not counts)

❍ “Percentage point” and “percent”

❍ “Probability” not “likelihood”
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Today

❍ Interaction terms in OLS

❍ Experiments

‚ What do we mean by causal inference?
‚ Why do experimental designs permit causal inference?
‚ Analyzing a basic experiment in R
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Interaction terms in regression models

Linear probability model predicting whether someone votes for Donald Trump

(i.e. basic OLS)

vote trumpi = α+β1ideologyi +β2malei +β3ideologyi ˆ malei + ϵi
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Model results
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vote trumpi = α+β1ideologyi +β2malei +β3ideologyi ˆ malei + ϵi

❍ β1ideologyi
‚ β1 is the relationship between ideology and voting for Donald
Trump when malei = 0

‚ Do not interpret this as the unconditional “effect” of ideology
‚ Statistical significance of this term is only for this conditional
case
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vote trumpi = α+β1ideologyi +β2malei +β3ideologyi ˆ malei + ϵi

❍ β2malei
‚ β2 is the relationship between being male and voting for
Donald Trump when ideologyi = 0

‚ Do not interpret this as the unconditional “effect” of being
male

‚ Statistical significance of this term is only for this conditional
case
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vote trumpi = α+β1ideologyi +β2malei +β3ideologyi ˆ malei + ϵi

❍ β3ideologyi ˆ malei
‚ β3 is the difference in the “effect” of ideology for men relative
to women

‚ i.e. Allows us to ask: When malei = 1 does ideology have a
stronger or weaker “effect”?

‚ Statistical significance tells you whether the “effect” is indeed
bigger or small for men versus women

Slide 8 of 40



Interactions Motivation for experiments Experimental framework & notation A few other things Exercise

Slide 9 of 40



Interactions Motivation for experiments Experimental framework & notation A few other things Exercise

Slide 10 of 40



Interactions Motivation for experiments Experimental framework & notation A few other things Exercise

Slide 11 of 40



Interactions Motivation for experiments Experimental framework & notation A few other things Exercise

But field experiments are nevertheless typically the gold
standard

❍ Blattman & Dercon (2018)

❍ Enos (2014)

❍ Bertrand & Mullainathan (2004)

❍ Munger (2017)
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“The Impacts of Industrial and Entrepreneurial Work
on Income and Health” (Blattman & Dercon 2018)

❍ Does industrial work help people in developing countries?

❍ Randomize who gets a job in a sweatshop

❍ Ñ Adverse effects on health and no effect on income (because
informal alternatives)
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“Causal effect of intergroup contact on exclusionary
attitudes” (Enos 2014)

❍ Does physical proximity to an out-group affect attitudes?

❍ Randomizes the presence of Spanish-speaking hispanics at
train stations in Boston’s predominantly white suburbs

❍ Ñ Increase in exclusionary attitudes
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“Are Emily and Greg More Employable Than Lakisha
and Jamal?” (Bertrand & Mullainathan 2004)

❍ Does race and gender affect labor market outcomes?

❍ Use what is called an “audit” or “correspondence” experiment

❍ Randomizes “white”- and “black”-sounding names on CVs

❍ Ñ White names receive 50 percent more callbacks for
interviews
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“Tweetment Effects on the Tweeted” (Munger 2017)

❍ Does social sanctioning reduce incivility on social media?

❍ Randomize a message sent to users who use the n-word on
Twitter

❍ Ñ Decrease in subsequent use of racist language
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Tweetment Effects on the Tweeted (Munger 2017)
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Survey experiments
“The Domestic Political Costs of Soliciting Foreign Electoral Intervention”

(Tomz & Weeks, Forthcoming)
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Conjoint experiments
“How economic, humanitarian, and religious concerns shape European

attitudes toward asylum seekers”(Bansak et al. 2016)
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“How economic, humanitarian, and religious concerns shape European

attitudes toward asylum seekers”(Bansak et al. 2016)
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What if...

❍ You were not offered a job in a sweatshop?

❍ You did not hear people speaking Spanish on your metro ride
to work?

❍ Your name did not sound ethnically African-American?

❍ You were not called out for being racist?

Slide 21 of 40



Interactions Motivation for experiments Experimental framework & notation A few other things Exercise

Causal effects

❍ The causal effect is the comparison between what one might
have believed or done had those things not happened

❍ A “counterfactual”:

‚ Imagining what an outcome would be in hypothetical world in
which something did/didn’t happen

❍ By definition, we cannot observe this counterfactual world

‚ i.e. we don’t get to see what happens if we assign someone to
the control group and what happens if we assign them to the
treatment group—we only observe one of these outcomes

❍ This is the fundamental problem of causal inference
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Social pressure experiment (Gerber et al. 2007)
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Social pressure experiment (Gerber et al. 2007)
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The basic framework for understanding experimental
results

❍ Take the average of an outcome between two groups (e.g.
proportion who voted)

‚ Treatment group receives a stimulus (“Your neighbors will
know if you voted”)

‚ Control group does not receive that stimulus

❍ However, without randomized assignment:

‚ Comparison is polluted by selection bias
‚ People often “select into” treatment (e.g. healthy people often
the ones who use wellness programs)

Randomization breaks selection bias because no one is more/less
likely to be assigned to the treatment or control
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Thinking in terms of “Potential outcomes”

% budget on water sanitation
if we could observe the counterfactual

Budget Share Budget Share Treatment
Village i Yi (Leader = Male) Yi (Leader = Female) effect

Village 1 10 15 5
Village 2 15 15 0
Village 3 20 30 10
Village 4 20 15 -5
Village 5 10 20 10
Village 6 15 15 0
Village 7 15 30 15

Average 15 20 5
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Potential outcomes

% budget on water sanitation
as we actually observe it in reality

Budget Share Budget Share Treatment
Village i Yi (Leader = Male) Yi (Leader = Female) effect

Village 1 ? 15 ?
Village 2 15 ? ?
Village 3 20 ? ?
Village 4 20 ? ?
Village 5 10 ? ?
Village 6 15 ? ?
Village 7 ? 30 ?

Average 16 22.5 6.5
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Some basic notation

❍ E[¨] Statistical expectation. Think of it just as an average.

❍ Yi (1) Potential outcome if received treatment, Yi(Leader=Female)

❍ Yi (0) Potential outcome if received control, Yi(Leader=Male)

❍ E [Yi (1)|Ti = 1]

‚ Expected value of Yi (1) among actually treated units

❍ E [Yi (0)|Ti = 1]

‚ Expected value of Yi (0) among actually treated units

❍ E [Yi (0)|Ti = 0]

‚ Expected value of Yi (0) among actual control units

❍ E [Yi (1)|Ti = 0]

‚ Expected value of Yi (1) among actual control units
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The average treatment effect (ATE)

E [Yi (1)|Ti = 1]
loooooooomoooooooon

Average treatment outcome
among the treatment group

´ E [Yi (0)|Ti = 0]
loooooooomoooooooon

Average control outcome
among the control group

This is just the difference in the average outcome among the
treatment group and the average outcome among the control
group
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Average treatment effect on the treated (ATT)

E [Yi (1)|Ti = 1]
loooooooomoooooooon

Average treatment outcome
among the treatment group

´ E [Yi (0)|Ti = 1]
loooooooomoooooooon

Average control outcome
among the treated group

This is the average treatment effect among the treatment group.
Treatment group is often a different population.

As we will see later on with quasi-experiment, the ATT is often the
best we can get
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If no selection bias:

❍ In a counterfactual world in which no one is treated, we
should expect no difference in outcomes between the
treatment and control group

❍ If we do see a difference, then we have selection bias

❍ i.e., if E [Yi (0)|Ti = 1] ‰ E [Yi (0)|Ti = 0]

❍ If so, then a difference in means will give us the ATE + the
selection bias:

‚ Difference in means = ATE + E [Yi(0)|Ti = 1] ´ E [Yi(0)|Ti = 0]
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Our goal, then, is to keep everything else equal
between the treatment and control groups

❍ Remove the reason why some receive the treatment and
others do not—as we often have in observational data

❍ The challenge in causal research is typically to find a way to
eliminate selection bias

❍ Model-based inference does this primarily with regression and
controls

❍ Design-based inference does this through explicit
randomization or clever quasi-experiments
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The law of large numbers

❍ Draw a sample from a population at random

❍ The average in the sample will be similar to the average in the
population

❍ The larger the sample, the greater the similarity (less
variation).

❍ The same applies to treatment and control groups.

‚ We have a group of people we would like to experiment on
‚ Assign everyone to a treatment or control group at random
‚ The average on all observed and unobserved variables in the
two groups will be equal in expectation
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The result of randomization

❍ Individuals assigned to the control and treatment groups are
not the same (fundamental problem of causal inference).

❍ But they are the same on average (in expectation)

❍ This allow us to easily estimate the average treatment effect

❍ There is variability, of course, but we can capture that with
basic statistical tools (our standard errors)
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A quick demonstration of this in R...
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We can estimate the treatment effect with just OLS

yi = α+βTi + ϵi

❍ OLS with a binary variable Ti just gives us a difference in
means

yi = α+βTi + γXi + ϵi

❍ Can include controls, Xi , to get more precision, because can
be imbalances even with randomization

‚ But we must declare that we will do this before we run an
experiment (in a “pre-registration plan” of the experiment)
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Randomization allows for unbiased estimation of causal
effects. But this can also break down:

❍ Exclusion restriction

‚ That potential outcomes only respond through treatment
assignment (and no other channel)

‚ e.g. This would be broken if an aid organization knows about
the village experiment and thus intervenes to provide more
help to male-led organizations

❍ Stable Unit Value Treatment Assignment (non-interference)

‚ e.g. The treatment of one village with a woman leader does
not affect the outcome of another village
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Other things to think about:

❍ Experimenter “demand effects”

‚ Research subjects intuiting what the goal of the experiment is
and thus responding in a way favorable to the experimenter
(but Mummolo & Petersen 2019)

❍ Researcher / affiliation characteristics

‚ e.g. survey experimenter is a man or woman

❍ Hawthorne effects

‚ Knowing one is in an experiment can affect behavior

❍ Non-compliance

‚ Not everyone follows through with the treatment (e.g. wellness
programs)

‚ But can get a Complier Average Causal Effect

❍ Clustered treatment assignment (e.g. classrooms)

❍ Effect heterogeneity (i.e. with interaction term)
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Open science and power analysis

❍ Pre-registration
‚ p-hacking and the garden of forking paths
‚ The file drawer
‚ All high-quality experiments are now “pre-registered”

❍ Power analysis
‚ Ensures that you don’t run a costly experiment with too few
subjects

‚ “If my best guess is that the effect of my experiment will be of
magnitude x, how big of a sample size will I need to find a
statistically significant result at least 80% of the time?”

❍ If you use experiments in your thesis, pre-register your design!

❍ It is what practicing researchers do, and will look good to an
external examiner (as it should)
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R Exercise

❍ Download exercise from the course website
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Exercise solutions
# What proportion of women are in the treatment group?

mean(D$woman[D$treatment == 1])

# What proportion of women in the control?

mean(D$woman[D$treatment == 0])

# Or

D %>%

group_by(treatment) %>%

summarize(woman = mean(woman ))

# What if you wanted to have a control group and two treatment groups , each of

# which is 1/3 of the sample? Where the control is coded "Control", the first

# treatment is coded "Treatment 1" and the third treatment is coded "Treatment 2"

# Use the function "round ()" to get whole numbers

D$treatment <- "Control"

D$treatment [(N/3+1):(N*2/3)] <- "Treatment 1"

D$treatment [(N*2/3+1):N] <- "Treatment 2"



Exercise solutions
# Load in their data. i.e. "Gerber_et_al_2008.csv"

G <- read_csv("Your_File_Path/Gerber_et_al_2008.csv")

# If we want to calculate the effect of the treatments relative to the control

# we need to make it a "factor" variable with factor () and order the

# categories such that "Control" is the first of the 4. The other of each

# treatment doesn ’t matter. You can make the order something like this:

# c(" Control", "Civic Duty", "Hawthorne", "Neighbors ")

G <- G %>%

mutate(messages = factor(messages ,

levels = c("Control", "Civic Duty",

"Hawthorne", "Neighbors")))



Exercise solutions
# To analyze the experiment run a standard OLS regression model , where the

# outcome variable is "primary2006" and the treatment variable is "messages ".

ols_model <- lm(primary2006 ~ messages , data = G)

# Output the regression results to stargazer

stargazer(ols_model , type = "text")

# Now analyze the experiment running the standard OLS regression model , but

# including the variable "sex" as a control

ols_model_with_control <- lm(primary2006 ~ messages + sex , data = G)

# Look at the coefficients of the model with summary ()

# Is there a meaningful difference between the estimated treatment effects

# when sex is controlled for? If not , why not?

summary(ols_model_with_control)
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