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Abstract—Researchers have increasingly realized the need to account for
within-group dependence in estimating standard errors of regression
parameter estimates. The usual solution is to calculate cluster-robust
standard errors that permit heteroskedasticity and within-cluster error
correlation, but presume that the number of clusters is large. Standard
asymptotic tests can over-reject, however, with few (five to thirty) clus-
ters. We investigate inference using cluster bootstrap-t procedures that
provide asymptotic refinement. These procedures are evaluated using
Monte Carlos, including the example of Bertrand, Duflo, and Mullain-
athan (2004). Rejection rates of 10% using standard methods can be
reduced to the nominal size of 5% using our methods.

I. Introduction

MICROECONOMETRICS researchers have increas-
ingly realized the essential need to account for any

within-group dependence in estimating standard errors of
regression parameter estimates. In many settings the default
OLS standard errors that ignore such clustering can greatly
underestimate the true OLS standard errors, as emphasized
by Moulton (1986, 1990).

A common correction is to compute cluster-robust stan-
dard errors that generalize the White (1980) heteroskedastic-
consistent estimate of OLS standard errors to the clustered
setting. This permits both error heteroskedasticity and quite
flexible error correlation within cluster, unlike a much more
restrictive random-effects or error-components model. In
econometrics this adjustment was proposed by White
(1984) and Arellano (1987), and it is implemented in
STATA, for example, using the cluster option. In the statis-
tics literature these are called sandwich standard errors,
proposed by Liang and Zeger (1986) for generalized esti-
mating equations, and they are implemented in SAS, for
example, within the GENMOD procedure. A recent brief
survey is given in Wooldridge (2003).

Not all empirical studies use appropriate corrections for
clustering. In particular, for fixed-effects panel models the
errors are usually correlated even after control for fixed
effects, yet many studies either provide no control for serial
correlation or erroneously cluster at too fine a level. Kézdi
(2004) demonstrated the usefulness of cluster-robust stan-
dard errors in this setting and contrasted these with other
standard errors based on stronger distributional assump-
tions. Bertrand, Duflo, and Mullainathan (2004), henceforth
BDM (2004), focused on implications for difference-in-

difference (DID) studies using variation across states and
years. Then the regressor of interest is an indicator variable
that is highly correlated within cluster (state) so there is
great need to correct standard errors for clustering. The
clustering should be on state, rather than on state-year.

A practical limitation of inference with cluster-robust
standard errors is that the asymptotic justification assumes
that the number of clusters goes to infinity. Yet in some
applications there may be few clusters. For example, this
happens if clustering is on region and there are few regions.
With a small number of clusters the cluster-robust standard
errors are downwards biased. Bias corrections have been
proposed in the statistics literature; see Kauermann and
Carroll (2001), Mancl and DeRouen (2001), and Bell and
McCaffrey (2002). Angrist and Lavy (2002) in an applied
study find that bias adjustment of cluster-robust standard
errors can make quite a difference. But even after appropri-
ate bias correction, with few clusters the usual Wald statis-
tics for hypothesis testing with asymptotic standard normal
or chi-square critical values over-reject. BDM (2004) dem-
onstrate through a Monte Carlo experiment that the Wald
test based on (unadjusted) cluster-robust standard errors
over-rejects if standard normal critical values are used.
Donald and Lang (2007) also demonstrate this and propose,
for DID studies with policy invariant within state, an alter-
native two-step GLS estimator that leads to T-distributed
Wald tests in some special circumstances. Ibragimov and
Muller (2007) propose an alternate approach based on
separate estimation within each group. They separate the
data into independent groups, estimate the model within
each group, average the separate estimates, and divide by
the sample standard deviation of these estimates, and then
compare against critical values from a T distribution. This
approach holds promise for settings with few groups and
where model identification and a central limit theorem holds
within each group. Our proposed method does not require
the latter two conditions, can be used to test multiple
hypotheses, and is based on the parameter estimator com-
monly used in practice.

In this paper we investigate whether bootstrapping to
obtain asymptotic refinement leads to improved inference
for OLS estimation with cluster-robust standard errors when
there are few clusters. We focus on cluster bootstrap-t
procedures that are generalizations of those proposed for
regression with heteroskedastic errors in the nonclustered
case.

Several features of our bootstraps are worth emphasizing.
First, the bootstraps involve resampling entire clusters.
Second, our goal is to use variants of the bootstrap that
provide asymptotic refinement, whereas many empirical
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studies use the bootstrap only to obtain consistent estimates
of standard errors. Third, we consider several different
cluster resampling schemes: pairs bootstrap, residuals boot-
strap, and wild bootstrap. Fourth, we consider examples
with as few as five clusters. Fifth, we evaluate our bootstrap
procedures in a number of settings including examples of
others that were used to demonstrate the deficiencies of
standard cluster-robust methods.

The paper is organized as follows. Section II provides a
summary of standard asymptotic methods of inference for
OLS with clustered data, and presents small-sample correc-
tions to cluster-robust standard errors that have been re-
cently proposed in the statistics literature. Section III pre-
sents various possible bootstraps for clustered data, with
additional details relegated to an appendix. Sections IV to
VI present, respectively, a Monte Carlo experiment using
generated data, a Monte Carlo experiment using data from
BDM (2004), and an application using data from Gruber
and Poterba (1994).

The primary contribution of this paper is to offer methods
for more accurate cluster-robust inference. These methods
are fairly simple to implement and matter substantively in
both our Monte Carlo experiments and our replications.

A second important contribution of this paper is to offer
a careful and precise description of the various bootstraps a
researcher might perform, and the similarities and differ-
ences between our proposed methods and several com-
monly applied methods. Our primary motivation for pre-
senting this description is to be precise about our methods.
It also offers empiricists a clearer understanding of the
menu of bootstrap choices and their consequences.

II. Cluster-Robust Inference

Before considering the bootstrap we present results on
inference with clustered errors.1

A. OLS with Clustered Errors

The model we consider is one with G clusters (sub-
scripted by g), and with Ng observations (subscripted by i)
within each cluster. Errors are independent across clusters
but correlated within clusters. The model can be written at
various levels of aggregation as

yig � x�ig� � uig, i � 1, . . . , Ng, g � 1, . . . , G,

yg � Xg� � ug, g � 1, . . . , G, (1)

y � X� � u,

where � is k � 1, xig is k � 1, Xg is Ng � k, X is N �
k, N � ¥g Ng, yig and uig are scalar, yg and ug are Ng � 1
vectors, and y and u are N � 1 vectors.

Interest lies in inference for the OLS estimator �̂ �
(X�X)�1X�y. Under the assumptions that data are indepen-
dent over g but errors are correlated within cluster, with
E[ug] � 0, E[ugu�g] � �g, and E[ugu�h] � 0 for cluster
h � g, we have �N(�̂ � �) �

a
�[0, NV[�̂]] where

V��̂	 � 
X�X��1� �
g�1

G

Xg�gX�g�
X�X��1. (2)

This differs from and is usually larger than the special-
ization V[�̂] � �u

2(X�X)�1 that is based on the assumption
of i.i.d. errors and leads to the default OLS variance esti-
mate when �u

2 is estimated by s2 � û�û/(N � k). The
underestimation bias is typically increasing in (a) cluster
size; (b) within-cluster correlation of the regressor; and (c)
within-cluster correlation of the error; see Kloek (1981).
The bias can be very large (Moulton, 1986, 1990; BDM,
2004).

One approach to correcting this bias is to model �g to
depend on unknown parameters, say �g � �g(
), and then
use estimate �̂g � �g(
̂). The random-effects (RE) model
assumes that there are cluster-specific i.i.d. random effects,
estimates the variance of these effects and of the i.i.d.
individual shocks, and uses these for �̂g. We call the
resulting standard errors Moulton-type standard errors.

B. Cluster-Robust Variance Estimates

The RE model places restrictions of homoskedasticity
and equicorrelation within cluster, and assumes knowledge
of the functional form �g(
). A less parametrically restric-
tive approach is to use the cluster-robust variance estimator
(CRVE)

V̂CR��̂	 � 
X�X��1� �
g�1

G

Xgũgũ�gX�g�
X�X��1. (3)

In the simplest case OLS residuals are used, so ũg � ûg �
yg � Xg�̂.

The CRVE controls for both error heteroskedasticity
across clusters and quite general correlation and heteroske-
dasticity within cluster, at the expense of requiring that the
number of clusters G 3 �. It is implemented for many
STATA regression commands using the cluster option
(which uses ũg � �cûg where c � (G/(G � 1))((N �
1)/(N � k)) � G/(G � 1) with large N), and is used in
SAS in the GENMOD procedure (which uses ũg � ûg).

A weakness of the standard CRVE with ũg � ûg is that it
is biased, since E[ûgû�g] � �g � E[ugu�g]. The bias depends
on the form of �g but will usually be downwards.2 Several
corrected residuals ũg for equation (3) have been proposed
by Kauermann and Carroll (2001) and Bell and McCaffrey

1 For this and subsequent sections, additional details and explanation are
provided in the working-paper version of this paper (Cameron, Gelbach,
& Miller, 2006).

2 For example, Kézdi (2004) uses ũg � ûg and finds in his simulations
that with G � 10 the downwards bias is between 9% and 16%.
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(2002). In our simulations we examine a correction pro-
posed by Bell and McCaffrey (2002) that is equivalent to
the jackknife estimate of the variance of the OLS estimator.
This correction generalizes the HC3 measure (jackknife) of
MacKinnon and White (1985), and so we refer to this
correction as the CR3 variance estimator.3 For a more
detailed discussion of the computation of this estimator, see
Cameron, Gelbach, and Miller (2006). Angrist and Lavy
(2002) apply a related (but distinct) correction (which is a
cluster generalization of the HC2 measure of MacKinnon &
White, 1985) in an application with G � 30 to 40 and find
that the correction increases cluster-robust standard errors
by between 10% and 50%.

C. Cluster-Robust Wald Tests

We consider two-sided Wald tests of H0 : �1 � �1
0

against Ha : �1 � �1
0 where �1 is a scalar component of �.4

We use the Wald test statistic

w � 
�̂1 � �1
0�/s�̂1, (4)

where s�̂1 is the square root of the appropriate diagonal entry
in V̂CR[�̂]. This t-test statistic is asymptotically normal
under H0, and we reject H0 at significance level � if �w� �
z�/ 2, where z�/ 2 is a standard normal critical value.

Under standard assumptions the Wald test is of correct
size as the number of clusters G 3 �. The problem we
focus on in this paper is that with few clusters the asymp-
totic normal critical values can provide a poor approxima-
tion to the correct, finite-G critical values for w, even if an
unbiased variance matrix estimator is used in calculating s�̂.

General small-sample results are not possible even if the
(clustered) errors are normally distributed. In practice, as a
small-sample correction some programs use a T-distribution
to form critical values and p-values. STATA uses the T(G �
1) distribution, which may be better than the standard
normal, but may still not be conservative enough to avoid
over-rejection. Bell and McCaffrey (2002) and Pan and Wall
(2002) propose instead using a T distribution with degrees
of freedom determined using an approximation method due
to Satterthwaite (1941). Rather than use OLS, Donald and
Lang (2007) propose an alternative two-step estimator that
leads to a Wald test that in some special cases is T(G � k1)
distributed where k1 is the number of regressors that are
invariant within cluster and often k1 � 2 (the intercept and
the clustered regressor of interest).

We instead continue to use the standard OLS estimator
with CRVE, and bootstrap to obtain bootstrap critical values

that provide an asymptotic refinement and may work better
than other inference methods for OLS when there are few
clusters.

III. Cluster Bootstraps

Bootstrap methods generate a number of pseudo-samples
from the original sample; for each pseudo-sample calculate
the statistic of interest, and use the distribution of this
statistic across pseudo-samples to infer the distribution of
the original sample statistic.5

There is no single bootstrap as there are different statis-
tics that we may be interested in, different ways to form
pseudo-samples, and different ways to use results for sta-
tistical inference. In this section we discuss several different
bootstraps that are examined in our simulations. We provide
greater detail on the bootstrap algorithms in appendix B, and
in our working paper (Cameron, Gelbach, & Miller, 2006).

Choices that need to be made when bootstrapping include
the following: what observational units to sample (individ-
ual observations or clusters); what objects to sample in
generating bootstrap sample ((y, X) pairs, residuals drawn
from the sample residuals, or residuals based on transfor-
mations of sample residuals); what statistics to calculate in
each bootstrap replication; how to use the resulting boot-
strap distribution of the statistics; and whether to impose the
null hypothesis in generating the bootstrap samples. Some
combinations of these choices provide asymptotic refine-
ment; others do not. Some choices in principle provide valid
tests, but in fact perform poorly with few clusters and
commonly occurring empirical settings.

The statistic considered is the Wald test statistic w defined
above. The data are clustered into G independent groups, so the
resampling method should be one that assumes independence
across clusters but preserves correlation within clusters.

A. Pairs Cluster Bootstrap-se and Bootstrap-t

The obvious method is to resample the clusters with
replacement from the original sample {(y1, X1), . . . , (yG,
XG)}. This resampling method is called a pairs cluster
bootstrap.6 A commonly used bootstrap in the empirical
literature is to use a pairs bootstrap with the bootstrap-se
procedure. The bootstrap-se procedure uses the bootstrap
estimates of �̂1, denoted �̂*1b, to form the bootstrap estimate
of standard error

s�̂1,B � � 1

B � 1
�

b�1

B

(�̂*1b � �̂*1
�

)2�1/ 2

, (5)
3 The jackknife drops in turn each observation, here a cluster, computes

the leave-one-out estimate �̂( g), g � 1, . . . , G, and then uses variance
estimate (G � 1)/G ¥g (�̂( g) � �̂). The CR3 measure for OLS is a
multiple of the related measure proposed by Mancl and DeRouen (2001)
in the more general setting of GEE.

4 The generalization to single hypothesis c�� � r � 0 where c is a k �
1 vector is trivial. For multiple hypotheses C� � r � 0 the Wald
asymptotic chi-square test would be used.

5 The bootstrap was introduced by Efron (1979). Standard book treat-
ments are Hall (1992), Efron and Tibsharani (1993), and Davison and
Hinkley (1997). In econometrics see Horowitz (2001), MacKinnon
(2002), and the texts by Davidson and MacKinnon (2004) and Cameron
and Trivedi (2005).

6 Alternative names used in the literature include cluster bootstrap, case
bootstrap, nonparametric bootstrap, and nonoverlapping block bootstrap.
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where �̂*1
�

� (1/B) ¥b�1
B �̂*1b. This estimated standard error

is then used in a typical Wald test. This is popular in the
applied literature as it enables an estimate of the standard
error when the analytic formula for the standard error is
difficult to compute. However, in contrast to the bootstrap-t
procedure, it does not offer asymptotic refinement, and so
may perform worse with few clusters.

The bootstrap-t procedure, proposed by Efron (1981) for
confidence intervals, computes the following Wald statistic
for each bootstrap replication

w*b � 
�̂*1,b � �̂1�/s�̂*1,b, b � 1, . . . , B,

where s�̂*1,b is a cluster-robust standard error for �̂*1,b. Note
that w*b is centered on �̂1. This centering is changed to �1

0 if
the resampling method imposes H0. The resulting distribu-
tion of w*1, . . . , w*B is then used to form inference on the
original Wald statistic in equation (4).7 We offer more
details in appendix B.

Both bootstrap-se and bootstrap-t procedures are asymp-
totically valid. For small number of clusters G, however, the
true size will differ from the nominal significance level �.
Furthermore, the true size will also differ across the two
procedures. An asymptotic approximation yields an actual
rejection rate or true size � � O(G�j/ 2). Then the true size
goes to � as G 3 �, provided j � 0. Larger j is preferred,
however, as then convergence to � is faster. A bootstrap
provides asymptotic refinement if it leads to j larger than
that for conventional (first-order) asymptotic methods.
Bootstrap-t procedures provide an asymptotic refinement,
while bootstrap-se procedures do not. Further, as we
show in our simulations below, this can matter in actual
data settings with few clusters.

Asymptotic refinement is more likely to occur if the
bootstrap is applied to an asymptotically pivotal statistic,
meaning one with asymptotic distribution that does not
depend on unknown parameters; see appendix A for a more
complete discussion. The bootstrap-t procedure directly
bootstraps w, which is asymptotically pivotal since the
standard normal has no unknown parameters.

An alternative method with asymptotic refinement is the
bias-corrected accelerated (BCA) procedure, defined in
Efron (1987), Hall (1992, pp. 128–141), and our working
paper (Cameron, Gelbach, & Miller, 2006). This bootstraps
�̂1, which is asymptotically nonpivotal as its asymptotic
distribution depends on unknown ��̂1

2 , but then provides
adjustment for bias and asymmetry. This is a popular
method for confidence intervals—STATA reports BCA
rather than percentile-t confidence intervals. We adapt BCA
to testing by rejecting H0 if w is outside the confidence
interval, and include a cluster version of BCA in our
simulations.

There are just a few studies that we are aware of that
consider asymptotic refinement. Sherman and le Cessie
(1997) conduct simulations for OLS with as few as ten
clusters. For 90% confidence intervals, they find that the
pairs cluster bootstrap-t undercovers by considerably less
than confidence intervals based on CRVE. Flynn and Peters
(2004) consider cluster randomized trials where a pairs
cluster bootstrap draws G clusters by separately resampling
from the G/ 2 treatment clusters and the G/ 2 control clus-
ters. For skewed data and few clusters they find that pairs
cluster BCA confidence intervals have considerable under-
coverage, even more than conventional robust confidence
intervals, though in their Monte Carlo design the robust
intervals do remarkably well. The authors also consider a
second-stage of resampling within each cluster, using a
method for hierarchical data given in Davison and Hinkley
(1997) that is applicable if the random-effects model is
assumed.

In the econometrics literature, BDM (2004) apply a pairs
cluster bootstrap using the bootstrap-t procedure. BDM use
default OLS standard errors, however, rather than cluster-
robust standard errors, in computing both the original data
and the resampled data Wald statistics. Because of this their
method may not yield asymptotic refinement. The authors
find that their bootstrap does better than using default OLS
standard errors and standard normal critical values, yet
surprisingly does worse than using cluster-robust standard
errors with standard normal critical values.

B. Residual and Wild Cluster Bootstrap-t

For a regression model with additive error, resampling
methods other than pairs cluster can be used. In particular,
one can hold regressors X constant throughout the pseudo-
samples, while resampling the residuals which can be then
used to construct new values of the dependent variable y.

The obvious method is a residual cluster bootstrap that
resamples with replacement from the original sample resid-
ual vectors to give residuals {û*1, . . . , û*G} and hence
pseudo-sample {(ŷ*1, X1), . . . , (ŷ*G, Xg)} where ŷ*g � X�g�̂
� û*g.

This resampling scheme has two weaknesses. First, it
assumes that the regression error vectors ug are i.i.d.,
whereas in section II we were specifically concerned that
the variance matrix �g will differ across clusters. Second, it
presumes a balanced data set where all clusters are the same
size.

The wild bootstrap relaxes both these restrictions. This
procedure creates pseudo-samples based on û*g � ûg with
probability 0.5 and û*g � �ûg with probability 0.5, with this
assignment at the cluster level. The wild bootstrap was
proposed for regression in the nonclustered case (and with
different weights) by Wu (1986). Its asymptotic validity and
asymptotic refinement were proven by Liu (1988) and
Mammen (1993). Horowitz (1997, 2001) provides a Monte
Carlo demonstrating good size properties. The weights we

7 The bootstrap-t procedure is also called a percentile-t procedure,
because the t-test statistic w is bootstrapped, and a studentized bootstrap,
since the Wald test statistic is a studentized statistic.
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use (�1 with probability 0.5 and �1 with probability 0.5)
are called Rademacher weights.8 Here we have extended the
wild bootstrap to the clustered setting. The only other study
to do so that we are aware of is the brief application by
Brownstone and Valletta (2001).

Several authors, particularly Davidson and MacKinnon
(1999), advocate use of bootstrap resampling methods that
impose the null hypothesis. This is possible using both
residual and wild bootstraps. Thus we present results based
on bootstraps that impose the null, in which case the
bootstrap Wald statistics are centered on �1

0 rather than �̂1,
and the residuals bootstrapped are those from the restricted
OLS estimator �̃ that imposes H0 : �1 � �1

0. For details see
appendix B.

C. Bootstraps with Few Clusters

With few clusters the bootstrap resampling methods pro-
duce a distinctly finite number of possible pseudo-samples,
so the bootstrap distribution w*1, . . . , w*q will not be
smooth even with many bootstrap replications. Further-
more, in some pseudo-samples �̂1 or s�̂1

may be inestimable.
This is likely to be a problem with pairs cluster bootstrap
when there is a binary regressor that is invariant within
cluster (so always 0 or always 1 for given g). Then if there
are few clusters some bootstrap resamples may have all
clusters with the regressor taking only value 0 (or value 1),
so that �̂k is inestimable. This issue does not arise when
regressors and dependent variables take several different
values, such as in the section IV Monte Carlos. But it does
arise in our application to the BDM (2004) and Gruber and
Poterba (1994) differences-in-differences examples, be-
cause the regressors of interest in those cases are indicator
variables. The residual or wild cluster bootstraps do not
encounter these problems, as we are not resampling the
regressors. In our BDM simulations below we see this issue
is problematic for G � 10.

D. Test Methods Used in this Paper

In the remainder of the paper we implement the Wald test
using nine bootstrap procedures, as well as four nonboot-
strap procedures. Table 1 provides a summary.

Our first four methods do not use the bootstrap and differ
only in the method from section II used to calculate V̂[�̂].
They use, respectively, the default variance estimate, the
Moulton-type estimate, the cluster-robust estimate (3), and
the cluster-robust estimate with jackknife corrected residu-
als. Method 1 is invalid if there is clustering, method 2 is
invalid unless the clustering follows a random-effects

model, while methods 3 and 4 are asymptotically valid
provided clusters are independent.

Methods 5 to 7 use the bootstrap-se procedure. We use
three different cluster bootstrap resampling methods, re-
spectively, the pairs cluster bootstrap, the residual clusters
bootstrap with H0 imposed, and the wild bootstrap with H0

imposed. For details see appendix B2. Methods 5–7 do not
provide asymptotic refinement, and method 6 is valid only
if cluster error vectors are i.i.d.

Method 8 uses the BCA bootstrap with pairs cluster
resampling.

Methods 9 to 13 use the bootstrap-t procedure. The first
three of these methods use pairs cluster resampling with
different standard error estimates. Method 9 is the already
discussed method of BDM that uses default standard errors
rather than CRVE standard errors. Methods 10 and 11 use
different variants of the CRVE defined in equation (3),
respectively, the standard CRVE and the CR3 correction. In
each case the same variance matrix estimation method is
used for both the original sample and the bootstrap resam-
ples. Methods 12 and 13 use, respectively, residual and wild
bootstraps, and both use the standard CRVE estimate and
impose H0. Method 12 is valid only if cluster error vectors
are i.i.d. For details see Appendix B1.

IV. Monte Carlo Simulations

To examine the finite-sample properties of our methods
we conducted several Monte Carlo exercises for dgp a linear
model with intercept and single regressor. The error is
clustered according to a random-effects model, with either
constant correlation within cluster or departures from this
induced by heteroskedasticity. This design is relevant to a
cross-section study of individuals with clustering at the state
level, for example. The regressor and dependent variable are
continuous and take distinct values across clusters and
(usually) within clusters, so that even with few clusters it is

8 These weights lead to asymptotic refinement if �̂ is symmetrically
distributed, which is the case if errors are symmetric. If �̂ is asymmetri-
cally distributed, our version is still asymptotically valid, but different
weights provide asymptotic refinement. Davidson and Flachaire (2001)
provide theory and simulation to nonetheless support using Rademacher
weights even in the asymmetric case.

TABLE 1.—DIFFERENT METHODS FOR WALD TEST

Method Bootstrap? Refinement? H0 imposed?

Conventional Wald
1. Default (i.i.d. errors) No — —
2. Moulton type No — —
3. Cluster-robust No — —
4. Cluster-robust CR3 No — —

Wald bootstrap-se
5. Pairs cluster Yes No —
6. Residuals cluster H0 Yes No —
7. Wild cluster H0 Yes No —

BCA test
8. Pairs cluster Yes Yes —

Wald bootstrap-t
9. BDM Yes No No

10. Pairs cluster Yes Yes No
11. Pairs CR3 cluster Yes Yes No
12. Residuals cluster H0 Yes Yes Yes
13. Wild cluster H0 Yes Yes Yes
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unlikely that a pairs cluster bootstrap sample will be ines-
timable.

Then

yig � �0 � �1xig � uig, (6)

with different generating processes for xig and uig used in
subsequent subsections. Since �1 � 1 in the dgp, the Wald
test statistic is w � (�̂1 � 1)/s�̂1

.
We perform R replications, where each replication yields

a new draw of data from the dgp, and leads to rejection or
nonrejection of H0. In each replication there are G groups
( g � 1, . . . , G), with NG individuals (i � 1, . . . , NG) in
each group. We varied the number of groups G from 5 to 30
and usually set NG � 30. The various methods given in
each row of tables 2–4 are then applied to the same gener-
ated data. For bootstraps we used B � 399 bootstraps rather
than the recommended B � 999 or higher. This lower value
is fine for a Monte Carlo exercise, since the bootstrap
simulation error will cancel out across Monte Carlo repli-
cations.

We estimate the actual rejection rate a, by â, the fraction
of the R replications for which H0 is rejected. This is an
estimate of the true size of the test. With a finite number of
replications a may differ from the true size because of
simulation error. The simulation standard error is sâ �
�â(1 � â)/(R � 1). For example, sâ � 0.007 for â �
0.05 and R � 1000.

A. Simulations with Homoskedastic Clustered Errors

In the first simulation exercise both regressors and errors
are correlated within group, with errors homoskedastic.
Data were generated according to

yig � �0 � �1xig � uig
(7)

� �0 � �1
 zg � zig�� 
εg � εig�,

with zg, zig, εg, and εig each an independent �[0, 1] draw,
and �0 � 0 and �1 � 1. Here the components zg and εg that
are common to individuals within a group induce within-
group correlation of both regressors and errors. The simu-
lation is based on R � 1000 Monte Carlo replications.

Our first results appear in table 2. Each column gives
results for the various numbers of groups (G � 5, 10, 15,
20, 25, 30) and throughout NG � 30. The first entry is the
estimated true size of the test. The Monte Carlo standard
error is given in parentheses. Each row presents a different
method, detailed in section IIID. For comparison, we also
show the rejection rate that would hold if we used the
asymptotic normal critical value of 1.96, but the Wald
statistic actually had a T distribution with G � 2 degrees of
freedom, Pr[�T� � 1.96�T � TG�2].

We begin with conventional (nonbootstrap) Wald tests
using different estimators of standard errors. The default
OLS standard errors that assume i.i.d. errors do poorly here,
with rejection rates given in row 1 of 0.43 to 0.50. This

TABLE 2.—1,000 SIMULATIONS FROM DGP WITH GROUP-LEVEL RANDOM ERRORS

(Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

Estimator
# Method

Number of Groups (G)

5 10 15 20 25 30

1 Assume i.i.d. 0.426 0.479 0.489 0.490 0.504 0.472
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

2 Moulton-type estimator 0.130 0.084 0.086 0.074 0.080 0.052
(0.011) (0.009) (0.009) (0.008) (0.009) (0.007)

3 Cluster-robust 0.195 0.132 0.096 0.093 0.095 0.069
(0.013) (0.011) (0.009) (0.009) (0.009) (0.008)

4 CR3 residual correction 0.088 0.084 0.065 0.072 0.067 0.057
(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

5 Pairs cluster bootstrap-se 0.152 0.122 0.095 0.096 0.100 0.072
(0.011) (0.010) (0.009) (0.009) (0.009) (0.008)

6 Residual cluster bootstrap-se 0.047 0.049 0.063 0.062 0.066 0.043
(0.007) (0.007) (0.008) (0.008) (0.008) (0.006)

7 Wild cluster bootstrap-se 0.012 0.031 0.039 0.041 0.056 0.040
(0.003) (0.005) (0.006) (0.006) (0.007) (0.006)

8 Pairs cluster bootstrap-BCA 0.161 0.106 0.101 0.087 0.094 0.068
(0.012) (0.010) (0.010) (0.009) (0.009) (0.008)

9 BDM bootstrap-t 0.117 0.109 0.094 0.094 0.095 0.068
(0.010) (0.010) (0.009) (0.009) (0.009) (0.008)

10 Pairs cluster bootstrap-t 0.081 0.082 0.075 0.073 0.070 0.054
(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

11 Pairs CR3 bootstrap-t 0.081 0.085 0.070 0.072 0.069 0.051
(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

12 Residual cluster bootstrap-t 0.034 0.052 0.049 0.044 0.056 0.050
(0.006) (0.007) (0.007) (0.006) (0.007) (0.007)

13 Wild cluster bootstrap-t 0.054 0.062 0.056 0.045 0.060 0.045
(0.007) (0.008) (0.007) (0.007) (0.008) (0.007)

T_distribution(G-2) 0.145 0.086 0.072 0.066 0.062 0.060
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illustrates the need to correct standard errors for clustering.
The Moulton-type estimate for standard errors should work
well here since this takes advantage of correct knowledge of
the dgp. The rejection rates in row 2 are considerably higher
than 0.05, especially for low G, though are similar to those
expected if the Wald test statistic is actually T(G � 2)
distributed. The CRVE is much better than default standard
errors, though still over-rejects compared with Moulton-
type standard errors. The CR3 correction leads to rejection
rates much closer to (but significantly different from) 0.05.

The pairs cluster bootstrap-se method yields rejection
rates in row 5 that are very similar to the CRVE, except for
G � 5. The residual cluster bootstrap-se method leads to
rejection rates in row 6 that are close to 0.05. From row 7,
the wild cluster bootstrap-se method under-rejects for G �
10, and rejects at a level close to 0.05 for G � 10. The
closeness to 0.05 of the latter two bootstrap methods is
surprising given that they do not offer an asymptotic refine-
ment. The BCA bootstrap with pairs cluster resampling
should provide an asymptotic refinement, yet from row 8 it
has rejection rates similar to those using CRVE.

The remainder of table 2 uses the theoretically preferred
bootstrap-t procedure with various resampling methods.
Even though it uses default standard errors, the BDM
bootstrap (row 9) does better than CRVE and is a great
improvement compared with not bootstrapping (row 1). The
pairs cluster bootstrap-t has rejection rates in row 10 of 0.08
that are much closer to (but significantly different from)
0.05. The CR3 correction makes little difference. Both the

residual cluster bootstrap-t and wild cluster bootstrap-t re-
jection rates are not statistically different from 0.05 (with
the exception of the residual bootstrap with G � 5).

In summary, table 2 demonstrates that all the bootstrap-t
methods are an improvement on the usual cluster-robust
method with standard normal critical values; the BCA
method provides no improvement on CRVE; and the resid-
ual cluster bootstrap-se also performs well.

B. Simulations with Heteroskedastic Clustered Errors

The second simulation brings in the additional complica-
tion of heteroskedastic errors. Then the Moulton-type cor-
rection and the residual bootstrap are no longer valid theo-
retically.

We generated data according to the following process:

yig � �0 � �1xig � uig

� �0 � �1
 zg � zig� � 
εg � εig�,
(8)

with zg, zig, and εg again independent �[0, 1] draws, but
now εig � �[0, 9 � ( zg � zig)2]. The dgp sets �0 � 1 and
�1 � 1.

Results appear in table 3. Default OLS standard errors
again do poorly, with rejection rates around 0.30. The
Moulton-type correction breaks down given the heteroske-
dasticity, as expected. The cluster-robust methods do a little
better than in the preceding table, but rejection rates in rows
3 and 4 still generally exceed 0.05. The residual cluster

TABLE 3.—1,000 SIMULATIONS FROM DGP WITH GROUP-LEVEL RANDOM ERRORS AND HETEROSKEDASTICITY

(Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

Estimator
# Method

Number of Groups (G)

5 10 15 20 25 30

1 Assume i.i.d. 0.302 0.288 0.307 0.295 0.287 0.297
(0.015) (0.014) (0.015) (0.014) (0.014) (0.014)

2 Moulton-type estimator 0.261 0.214 0.206 0.175 0.174 0.180
(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

3 Cluster-robust 0.208 0.118 0.110 0.081 0.072 0.068
(0.013) (0.010) (0.010) (0.009) (0.008) (0.008)

4 CR3 residual correction 0.138 0.092 0.086 0.070 0.062 0.062
(0.011) (0.009) (0.009) (0.008) (0.008) (0.008)

5 Pairs cluster bootstrap-se 0.174 0.111 0.109 0.085 0.074 0.070
(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

6 Residual cluster bootstrap-se 0.181 0.169 0.183 0.157 0.149 0.163
(0.012) (0.012) (0.012) (0.012) (0.011) (0.012)

7 Wild cluster bootstrap-se 0.019 0.041 0.057 0.040 0.038 0.043
(0.004) (0.006) (0.007) (0.006) (0.006) (0.006)

8 Pairs cluster bootstrap-BCA 0.183 0.103 0.099 0.082 0.070 0.064
(0.012) (0.010) (0.009) (0.009) (0.008) (0.008)

9 BDM bootstrap-t 0.181 0.108 0.110 0.090 0.070 0.068
(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

10 Pairs cluster bootstrap-t 0.079 0.067 0.074 0.058 0.054 0.053
(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

11 Pairs CR3 bootstrap-t 0.064 0.062 0.072 0.057 0.050 0.048
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

12 Residual cluster bootstrap-t 0.066 0.057 0.066 0.049 0.043 0.047
(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

13 Wild cluster bootstrap-t 0.053 0.056 0.058 0.048 0.041 0.044
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

T_distribution(G-2) 0.145 0.086 0.072 0.066 0.062 0.060
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bootstrap-se method now breaks down due to heteroskedas-
ticity, with rejection rates in row 6 in excess of 0.15. The
pairs cluster bootstrap-se and wild cluster bootstrap-se
methods (rows 5 and 7) perform similarly to table 2. The
BCA bootstrap again has rejection rates in row 8 similar to
those using CRVE (row 3).

The results for the bootstrap-t methods in rows 9 to 13 are
similar to those in table 2. The BDM bootstrap-t (row 9) has
similar high rejection rates to those in table 2, aside from
marked deterioration for G � 5. The remaining bootstrap-t
methods all yield rejection rates less than 0.08, with the
residual cluster bootstrap-t and wild cluster bootstrap-t doing
best. The good performance of the residual cluster bootstrap-t
is surprising given that errors are heteroskedastic.

In summary, the table 3 results for inference with het-
eroskedastic clustered errors are similar to those for ho-
moskedastic clustered errors except that, as expected, the
Moulton-type correction and residual cluster bootstrap-se
methods now perform very poorly. The bootstrap-t methods
are an improvement on the usual cluster-robust method with
standard normal critical values, while the BCA method
provides no improvement.

C. Alternative Critical Values, Cluster Sizes and
Regressor Design

We perform a third set of Monte Carlo experiments to
examine how the different estimators perform under varying

assumptions. These simulations are presented in table 4 with
each simulation based on G � 10 groups.

Column 1 of table 4 provides a baseline against which the
other results are compared. It uses the same dgp as that of
table 2. In column 2, for tests without asymptotic refinement
we use critical values from a T distribution with 8 degrees
of freedom, an ad hoc finite sample correction, so that we
reject H0 if �w� � 2.306 rather than �w� � 1.960. Then the
Moulton-type estimator and the CR3 correction lead to
rejection rates not statistically significant from 0.05. The
CRVE and pairs cluster bootstrap-se still lead to over-
rejection, though by not as much. And the residual cluster
bootstrap-se and wild cluster bootstrap-se, which seem to do
very well when asymptotic normal critical values are used,
now lead to great under-rejection.

In columns 3 to 5 of table 4 we consider alternative
cluster sizes of, respectively, two, ten, and one hundred
observations. For method 1, the rejection rates increase with
cluster size. Once clustering is accounted for, by any of
methods 2–13, rejection rates do not vary significantly with
cluster size.

In column 6 of table 3 we examine the performance of the
various testing methods when there are three additional
regressors, each with no clustering component, and we
continue to test the first regressor. The four regressors are
scaled down by a factor of one-half, so that the sum of their
variances will equal the variance of the single regressor

TABLE 4.—1,000 SIMULATIONS FROM DIFFERENT DGPS (SEE TEXT) AND G � 10 Groups
(Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

Main—
from

Table 2

Reject
based
on T

(8 dof)

Cluster
Size �

2

Cluster
Size �

10

Cluster
Size �

100
4 RHS

Variables

Xs are
Constant
Within
Group

Xs Are
i.i.d.

Unbalanced
Group
Sizes

(10, 50)
Estimator

# Method
Column
Number 1 2 3 4 5 6 7 8 9

1 Assume i.i.d. 0.491 0.106 0.268 0.679 0.687 0.770 0.054 0.524
(0.016) (0.010) (0.014) (0.015) (0.015) (0.013) (0.007) (0.016)

2 Moulton-type estimator 0.092 0.044 0.095 0.098 0.088 0.089 0.125 0.061 0.129
(0.009) (0.006) (0.009) (0.009) (0.009) (0.009) (0.010) (0.008) (0.011)

3 Cluster-robust 0.129 0.082 0.137 0.126 0.115 0.129 0.183 0.103 0.183
(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.013) (0.010) (0.012)

4 CR3 residual correction 0.090 0.054 0.094 0.086 0.077 0.080 0.090 0.086 0.091
(0.009) (0.007) (0.009) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009)

5 Pairs cluster bootstrap-se 0.120 0.071 0.100 0.114 0.120 0.128 0.063 0.122 0.138
(0.010) (0.008) (0.009) (0.010) (0.010) (0.010) (0.008) (0.010) (0.011)

6 Residual cluster bootstrap-se 0.058 0.013 0.069 0.068 0.060 0.057 0.054 0.080
(0.007) (0.004) (0.008) (0.008) (0.008) (0.007) (0.007) (0.009)

7 Wild cluster bootstrap-se 0.028 0.006 0.048 0.044 0.032 0.030 0.036 0.053 0.019
(0.005) (0.002) (0.007) (0.006) (0.006) (0.005) (0.006) (0.007) (0.004)

8 Pairs cluster bootstrap-BCA 0.111 0.125 0.112 0.109 0.112 0.100 0.134 0.140
(0.010) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011) (0.011)

9 BDM bootstrap-t 0.119 0.086 0.115 0.112 0.119 0.121 0.097 0.128
(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011)

10 Pairs cluster bootstrap-t 0.096 0.085 0.083 0.086 0.090 0.066 0.079 0.120
(0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.010)

11 Pairs CR3 bootstrap-t 0.090 0.075 0.077 0.081 0.084 0.050 0.082 0.110
(0.009) (0.008) (0.008) (0.009) (0.009) (0.007) (0.009) (0.010)

12 Residual cluster bootstrap-t 0.055 0.052 0.056 0.050 0.043 0.043 0.065
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.008)

13 Wild cluster bootstrap-t 0.055 0.064 0.056 0.048 0.052 0.045 0.064 0.061
(0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008)

T_distribution(8) 0.086
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used in the dgp of column 1. The only significant change in
rejection rates is an increase in the already high rejection
rate for method 1 which neglects clustering.

All preceding regression designs set the intraclass corre-
lation, �x, of the regressor of interest to be 0.5. In column 7
we increase �x to �x � 1 (cluster-invariant regressor with
xig � zg) and in column 8 we decrease it to �x � 0 (i.i.d.
regressor with xig � zig). In both cases the regressor is
scaled up by �2 to keep V[ xig] unchanged.

With cluster-invariant regressor (column 7) the failure to
control for clustering is magnified and the rejection rates in
rows 1 to 3 are larger than in the benchmark column 1. For
bootstrap-se and bootstrap-t there is little change in rejec-
tion rates, except that for reasons unknown the pairs cluster
bootstraps (both bootstrap-se and bootstrap-t) now have
rejection rates not statistically significantly different from
0.05.

With i.i.d. regressor (column 8) the default OLS standard
errors are consistent and the rejection rate in row 1 is close
to 0.05. The Moulton-type and CRVE also have rejection
rates much closer to 0.05. The various bootstrap procedures
lead to rejection rates that are all close to those in column 1.

Finally, in column 9 we change the dgp to examine an
unbalanced setting, so that one-half of the clusters are small
(with group size NG � 10) and half of the clusters are large
(with group size NG � 50). The residual cluster bootstrap
requires equal cluster sizes, so it cannot be used in this
design. The remaining methods yield results qualitatively
similar to those in column 1, with the main change being
that the standard CRVE leads to much larger over-rejection
in row 3.

In summary, all the bootstrap-t methods are an improve-
ment on the usual cluster-robust method with standard
normal critical values; the BCA method provides no im-
provement; and the residual cluster bootstrap-se also per-
forms well. Table 4 also indicates that when nonbootstrap
methods are used to control for clustering, it is better to use
critical values from a T(G � 2) distribution than from a
standard normal.

V. Bertrand, Duflo, and Mullainathan (2004)
Simulations

To enable a more practically familiar application of our
methods, we now consider the differences-in-differences
setup explored in Bertrand, Duflo, and Mullainathan (2004).
The main results of this section are that the residual and
wild cluster bootstrap methods perform well in cases with as
few as six clusters. These results stand in contrast to the
more pessimistic conclusion about cluster bootstrapping in
BDM (2004).

The data set is of U.S. states over time. The dependent
variable is the state-by-year average log wage level (after
partialing out certain individual characteristics). For such a
variable, the error term within cluster is serially correlated,
even if state and year fixed effects are included as regres-

sors. The regressor of interest is a state policy dummy
variable.

The original data are CPS data on many individuals over
time and states. Most of the BDM (2004) study uses a
smaller data set that aggregates individual observations to
the state-year level. We begin with these data, which have
the advantage of being balanced and relatively small, before
moving to the individual data.9

A. Aggregated State-Year Data

Using our choice of subscripts, the igth observation is for
the ith year in the gth state. There are 50 states and 21 years.
The aggregate model estimated is

yig � �g � 
i � �1Iig � uig,

where yig is a year-state measure of excess earnings, and the
regressors are state dummies, year dummies, and a policy
change indicator Iig.10

If a policy change occurs in state g at time i*, then Iig �
0 for i � i* and Iig � 1 for i � i*. BDM’s experiments
randomly assign a policy change to occur in half the states,
and when it does occur it occurs somewhere between the
sixth and fifteenth year. In each simulation a different draw
of G states with replacement is made from the original 50
states.

The Wald statistic studied is w � �̂1/s�̂1
. BDM investi-

gate size properties by letting the policy change be a
“placebo” regressor that has no effect on yig. They also
investigate the power against the alternative Ha : �1 � 0.02
by actually increasing yig by 0.02 when Iig � 1. They find
that (a) default standard errors do poorly; (b) cluster-robust
standard errors do well for all but G � 6; and (c) their
bootstrap, which we discuss in our section IIIA, does poorly
for low numbers of clusters, with actual rejection rates 0.44,
0.23, and 0.13 for G � 6, 10, and 20, respectively.

The first two rows of table 5 show that the default
standard errors and Moulton-type estimator lead to high
rejection rates. The third row uses the cluster-robust vari-
ance estimator, and gives results very close to those in
BDM’s table 8.

Rows 4 to 6 of our table 5 give rejection rates when the
Wald statistic is calculated using bootstrap standard error
estimates. These generally lead to tests with actual size
between 0.04 and 0.09. The one notable exception is that the

9 We extracted individual-level data from the relevant CPS data sets and,
when appropriate, aggregated these data using the method presented in
BDM (2004). This gave data similar to that in BDM (2004). We thank
these authors for sharing some of their data with us, enabling this
comparison.

10 We retain our notation for consistency with the rest of our discussion.
However, more obvious subscripts for this problem are i for individual, s
for state, and t for year. The underlying model is yist � �s � 
t � x�ist�
� �Ist � uist, where yist is individual log-earnings for women aged 25–50
years, and xist is age and education. BDM use a two-step OLS procedure:
(a) regress yist on xist yielding OLS residual ûist; (b) regress �ûst � Nst

�1 ¥i
ûist on state dummies, year dummies, and Ist. Thus our yig is their �ûst.
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cluster-pairs standard error bootstrap (row 4) produces se-
vere under-rejection (0.001) with G � 6. Informal experi-
mentation suggests to us that this is because many bootstrap
replications (with only a couple of states sampled) sample
only one “treatment” or “control” state. For these replica-
tions, the treatment dummy (or constant) is fit perfectly, and
so has zero estimated residuals. When these “zero” residuals
are plugged into the CRVE formula (3) the resulting
V̂CR[�̂*1] is unreasonably small, leading to Wald statistics in
some bootstrap resamples that are too large to consistently
represent the Wald statistic’s true distribution. This in turn
results in the severe under-rejection.11

The BCA method with pairs cluster resampling in general
leads to greater over-rejection than when CRVE is used.

The remaining rows 8 to 11 of table 5 give rejection rates
for various bootstrap-t procedures. From row 8 we find that
the BDM bootstrap performs similarly to cluster-robust
standard errors. For reasons we cannot explain, the rejection
rates we obtain are considerably lower than those given in
BDM table 5. The pairs cluster bootstrap-t under-rejects
appreciably for both G � 6 and G � 10 for reasons
discussed above. The residual and wild cluster bootstrap-t
methods (rows 10 and 11) do very well with actual rejection
rates approximately equal to 0.05, even for G � 6.

The discussion so far has focused on size. The last 4
columns in table 5 report power against a fixed alternative.
As expected, power increases as the number of clusters
increases, since there is then greater precision in estimation.

B. Individual-Level Data

For completeness we additionally consider regression
using individual-level data. Recall that we are using g to
denote the clustering unit and i to denote year, so we use n
to denote individual. Then the model is

ynig � �g � 
i � x�nig� � �1Iig � unig,

where the individual-level regressors xnig are a quartic in
age and three education dummies. Iig is generated as before.

Table 6 reports the results of R � 250 simulations with
B � 199 replications used for the bootstrap. We consider
cases G � 6 and G � 10. The first row reports high
rejection rates when we use the CRVE but erroneously
cluster on state-year combinations. In the second row of
table 6 we see that using the CRVE and correctly clustering

11 We thank Doug Staiger for suggesting this mechanism to us.

TABLE 5.—1,000 SIMULATIONS FROM BDM (2004) DESIGN

(Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses; size column measures size and power column measures power)

Estimator
# Method

Number of States (G)

6 10 20 50 6 10 20 50
Size Size Size Size Power Power Power Power

1 Assume i.i.d. 0.459 0.438 0.461 0.439 0.515 0.506 0.574 0.692
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

2 Moulton-type estimator 0.449 0.428 0.454 0.429 0.510 0.490 0.565 0.686
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

3 Cluster-robust 0.109 0.088 0.049 0.048 0.165 0.110 0.142 0.254
(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

4 Pairs cluster bootstrap-se 0.001 0.087 0.060 0.058 0.001 0.103 0.161 0.275
(0.001) (0.009) (0.008) (0.007) (0.001) (0.010) (0.012) (0.014)

5 Residual cluster bootstrap-se 0.043 0.055 0.045 0.048 0.079 0.069 0.127 0.260
(0.006) (0.007) (0.007) (0.007) (0.009) (0.008) (0.011) (0.014)

6 Wild cluster bootstrap-se 0.043 0.056 0.046 0.047 0.076 0.075 0.134 0.262
(0.006) (0.007) (0.007) (0.007) (0.008) (0.008) (0.011) (0.014)

7 Pairs cluster bootstrap-BCA 0.087 0.111 0.067 0.061 0.147 0.134 0.166 0.276
(0.009) (0.010) (0.008) (0.008) (0.011) (0.011) (0.012) (0.014)

8 BDM bootstrap-t 0.111 0.086 0.053 0.054 0.161 0.113 0.153 0.270
(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

9 Pairs cluster bootstrap-t 0.006 0.022 0.043 0.061 0.007 0.033 0.112 0.255
(0.002) (0.005) (0.006) (0.008) (0.003) (0.006) (0.010) (0.014)

10 Residual cluster bootstrap-t 0.046 0.051 0.039 0.044 0.081 0.065 0.118 0.256
(0.007) (0.007) (0.006) (0.006) (0.009) (0.008) (0.010) (0.014)

11 Wild cluster bootstrap-t 0.067 0.053 0.041 0.045 0.110 0.078 0.124 0.247
(0.008) (0.007) (0.006) (0.007) (0.010) (0.008) (0.010) (0.014)

TABLE 6.—250 SIMULATIONS FROM BDM (2004) DESIGN USING MICRODATA

(Rejection rates for tests of nominal size 0.05 with simulation standard
errors in parentheses)

Estimator
# Method

Number of States
(G)

6 10
Size Size

1 CRVE cluster on state-year 0.440 0.444
(0.031) (0.031)

3 CRVE cluster on state 0.148 0.100
(0.023) (0.019)

11 Wild bootstrap-t cluster on state 0.080 0.048
(0.017) (0.014)

Note: Micro regressions control for a quartic in age, three education dummies, and state and year fixed
effects. Number of Monte Carlo replications R � 250. Number of bootstrap replications B � 199.
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on state considerably reduces the rejection rates, but they
are still much too high. The third row of table 6 shows that
the bootstrap-t procedure using wild cluster resampling
(with clustering on the state) leads to rejection rates not
statistically significantly different from 0.05. Because the
individual-level data are unbalanced we cannot use the
residual cluster bootstrap.

In summary, using both aggregate and micro data, the
wild cluster bootstrap-t leads to rejection rates of 0.05. The
pairs cluster bootstrap-t works fine for G � 20, but for G �
10 can fail because of problems posed by the binary
regressor.

VI. Gruber and Poterba (1994) Application

Gruber and Poterba (1994, henceforth GP) examine the
impact of tax incentives on the decision to purchase health
insurance. They analyze differential changes for self-
employed and business-employed in the after-tax price of
health insurance due to the Tax Reform Act of 1986
(TRA86). The TRA86 extended the tax subsidy for health
insurance to self-employed individuals; individuals em-
ployed by a business had a tax subsidy both before and after
TRA86, and so can serve as a comparison group.

The dependent variable y is whether or not an employed
person has private health insurance. Like GP we focus on
individuals 25–54 years of age. The model can be written as

yijt � �1 � �2SELFijt � �3POSTijt � �1SELFijt

� POSTijt � ujt,

where i denotes individual, j denotes employer type, t
denotes year, SELFijt � 1 if individual i is self-employed at
time t, and POSTijt � 1 if the year is 1987, 1988, or 1999.

We perform difference-in-difference analysis, controlling
for potential clustering of errors of a form considered by
Donald and Lang (2007). Like Donald and Lang, we ignore
additional regressors (GP examine subtle interactions be-
tween pretax income, employment status, and the TRA86).

In their preliminary analysis, GP report in their table IV
average insurance rates by year and employer-type for
March CPS data on eight years (five before the TRA86 and
three after), leading to an aggregated data set with sixteen
observations. Our simple difference-in-difference estimate
is 0.055, with a standard error of 0.0044.

We next follow Donald and Lang (2007), and treat years
as clusters, so that there are G � 8 clusters in our analysis.
When we cluster on year, the cluster-robust standard error
obtained using equation (3) is 0.0074. The regressor is
highly statistically significant, with �̂1/s�̂1

� 7.46 and very
low p-value.

To enable more meaningful analysis we test H0 : �1 �
0.040 against Ha : �1 � 0.040. Then w � (0.055 �
0.040)/0.0074 � 2.02 with p-value of 0.043 using stan-
dard normal critical values and 0.090 using the T distribu-
tion with G � 2 � 6 degrees of freedom.

If we instead bootstrap this Wald statistic with B � 999
replications, the pairs cluster bootstrap-t yields p � 0.209,
the residual cluster bootstrap-t gives p � 0.112, and the
wild cluster bootstrap-t gives a p-value of 0.070.12 We
believe that the p-value for the pairs cluster bootstrap is
implausibly large, for reasons discussed in the BDM repli-
cation, while the other two bootstraps lead to plausible
p-values that, as expected, are larger than those obtained by
using asymptotic normal critical values.

We have also estimated this model on individual-level
data (see Cameron, Gelbach, & Miller, 2006), with results
very similar to those reported here.

VII. Conclusion

Many microeconometric studies use clustered data, with
regression errors and regressors correlated within cluster.
Then it is essential that one control for clustering. A good
starting point is to use Wald tests (or t-tests) that use
cluster-robust standard errors, provided the appropriate
level of clustering is chosen. As made clear in section 2 of
BDM (2004), too many studies fail to do even this much.

In this paper we are concerned with the additional com-
plication of having few clusters. Then the use of appropriate
cluster-robust standard errors still leads to nontrivial over-
rejection by Wald tests. Our Monte Carlo simulations reveal
that at the very least one should provide some small-sample
correction of standard errors, such as magnifying the resid-
uals in equation (3) by a factor �G/(G � 1) and using a T
distribution with G or fewer degrees of freedom (we arbi-
trarily used G � 2 in table 3).

The primary contribution of this paper is to use bootstrap
procedures to obtain more accurate cluster-robust inference
when there are few clusters. Our discussion and implemen-
tations of the bootstrap make it clear that there are many
possible variations on a bootstrap. The usual way that the
bootstrap is used, to obtain an estimate of the standard error,
does not lead to improved inference with few clusters as it
does not provide an asymptotic refinement.

We focus on the bootstrap-t procedure, the method most
emphasized by theoretical econometricians and statisticians,
and which provides asymptotic refinement. We find that the
bootstrap-t procedure can lead to considerable improve-
ment, provided the same method is used in calculating the
Wald statistic in the original sample and in the bootstrap
resamples.

But these improvements depend on the resampling
method used and on the discreteness of the data being
resampled. The standard method for resampling that pre-
serves the within-cluster features of the error is a pairs
cluster bootstrap that resamples at the cluster level, so that
if the gth cluster is selected then all data (dependent and

12 The results reported use Mammen weights and do not impose the null
hypothesis. Similar results were obtained using Rademacher weights and
imposing the null hypothesis.
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regressor variables) in that cluster appear in the resample.
This bootstrap can lead to inestimable models or nearly
inestimable models in some bootstrap pseudo-samples when
there are few clusters and regressors take a very limited
range of values. While not all applications will encounter
this problem, it does arise when interest lies in a binary
policy variable that is invariant (conditional on other regres-
sors) within cluster.

We find that an alternative cluster bootstrap, the wild
cluster bootstrap, does especially well. This bootstrap is a
cluster generalization of the wild bootstrap for heteroske-
dastic models. Even when analysis is restricted to a wild
cluster bootstrap, several different variations are possible.
The variation we use is one that uses equal weights and
probability, and uses residuals from OLS estimation that
imposes the null hypothesis. This bootstrap works well in
our own simulation exercise and when applied to the data of
BDM (2004).

The BDM (2004) study is one of the highest-profile
papers highlighting the importance of cluster-robust infer-
ence. One important conclusion of BDM (2004) is that for
few (six) clusters the cluster-robust estimator performs
poorly, and for a moderate (ten and twenty) number of
clusters their bootstrap-based method also does poorly. We
perform a reanalysis of their exercise, and come to much
moreoptimistic conclusions.Using thewildclusterbootstrap-
t method, our empirical rejection rates are extremely close
to the theoretical values, even with as few as six clusters,
and there is no noticeable loss of power after accounting for
size. Our results offer not only theoretical improvements,
but practical ones as well. We hope researchers will take
advantage of these improvements in the plentiful cases
when clustering among a relatively small number of groups
is a real concern.
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APPENDIX A

Appendix A presents a general discussion of the bootstrap and why it
is asymptotically better to bootstrap an asymptotically pivotal statistic
(bootstrap-t method). Appendix B details the various bootstraps summa-
rized in table 1.

Asymptotic Refinement for Bootstrap-t

The theory draws heavily on Hall (1992) and Horowitz (2001). Cam-
eron and Trivedi (2005) provide a more introductory discussion.

1. General bootstrap procedure

We use the generic notation TN � TN(SN) to denote the statistic of
interest, calculated on the basis of a sample SN of size N. We focus on
inference for a single regression coefficient �1 from multivariate OLS
regression. Then leading examples are TN � �̂1, and TN � (�̂1 � �1

0)/s�̂1
,

where we recall that �1
0 is given by the null hypothesis.

We wish to approximate the finite sample cdf of TN, HN(t) � Pr[TN �
t]. The bootstrap does this by obtaining B resamples of the original sample
SN, using methods given in the subsequent subsection. The bth resample
is denoted S*Nb and is used to form a statistic T*Nb � T*N(S*Nb). The
empirical distribution of T*Nb, b � 1, . . . , B, is used to estimate the
distribution of TN, so Pr[TN � t] is estimated by the fraction of the
realized values of T*N1, . . . , T*Nb that are less than t, denoted

ĤN
t� � B�1 �
b�1

B

1
T*Nb � t�, (A1)

where 1� is the indicator function. This distribution can be used to
compute moments such as variance, and also to compute test critical
values and p-values.

General bootstrap procedure for a statistic TN:

1. Do B iterations of this step. On the bth iteration:
(a) Resample the data from SN using one of the procedures pre-

sented in appendix B. Call the resulting resample S*Nb.
(b) Use the bootstrap resample form T*Nb � T*N(S*Nb), where in

some but not all cases T*N� � TN�.
2. Conduct inference using ĤN(t). See appendix B for further details.

The bootstrap-t method directly approximates the distribution of TN �
(�̂1 � �1

0)/s�̂1
. If the bootstrap resampling method imposes H0 then T*Nb �

(�̂*1b � �1
0)/s�̂*1b, where �̂*1b is the estimator of �1 and s�̂*1b is the standard

error from resample S*Nb. Note that we center T*Nb on �1
0 since the

resampling dgp has �1 � �1
0. If instead the bootstrap resampling method

does not impose H0, the case necessary for pairs cluster, then T*Nb � (�̂*1b

� �̂1)/s�̂*1b. The centering is on �̂1 and the bootstrap views the original
sample as the population. That is, implicitly we impose �1 � �̂1, and
the bootstrap resamples are viewed as B samples from a population
with �1 � �̂1.

By contrast the bootstrap-se, percentile, and BCA methods bootstrap
TN � �̂1. Then T*Nb � �̂*1b, where �̂*1b is the estimator of �1 from resample
S*Nb.

2. Asymptotic refinement

For notational simplicity drop the subscript N, so TN(SN) � T has
small-sample cdf denoted H(t�F) � Pr[T � t�F] where F is the true cdf
generating the underlying data in sample SN. The distribution H usually is
analytically intractable. The usual first-order asymptotic theory replaces it

with the asymptotic distribution of the test-statistic. The bootstrap instead
replaces H with Ĥ(t�F̂) � Pr[T* � t�F̂] where F̂ denotes the cdf used to
obtain bootstrap resamples. We are concerned with how good an estimate
Ĥ(t�F̂) is of H(t�F).

The bootstrap leads to consistent estimates and hypothesis tests under
relatively weak assumptions. Because the bootstrap should be based on a
distribution F̂ that is consistent for F, one must take care to choose the
resampling method so as to mimic the properties of F. For consistency, the
bootstrap requires smoothness and continuity in F and in Ĥ. These
assumptions are satisfied for our application for the OLS estimator with
clustered errors.

A consistent bootstrap need not have asymptotic refinement, however.
A key requirement is that we work with an asymptotically pivotal statistic,
as now explained.

To begin with assume that T is standardized to have mean 0 and
variance 1. The usual asymptotic approximation T �a �[0, 1] is

Pr�T � t�F	 � �
t� � O
N�1/ 2�,

where �� is the standard normal cdf and N is sample size. When one uses
the standard normal critical values with a t-statistic, this is the approxi-
mation on which one relies. The Edgeworth expansion gives a better
asymptotic approximation

Pr�T � t�F	 � �
t� � N�1/ 2a
t��
t� � O
N�1�,

where �� is the standard normal density and a� is an even quadratic
polynomial with coefficients that depend on the low-order cumulants (or
moments) of the underlying data. One can directly use the preceding
result, but computation of the polynomial coefficients in a(t) is theoret-
ically demanding. The bootstrap provides an alternative.

The bootstrap version of T is the statistic T*, which has Edgeworth
expansion

Pr�T* � t�F̂	 � �
t� � N�1/ 2â
t��
t� � Op
N
�1�,

where F̂ is the empirical distribution function of the sample. If â(t) �
a(t) � Op(N�1/ 2), which is often the case, then

Pr�T � t�F	 � Pr�T* � t�F̂	 � Op
N
�1�. (A2)

This statement means that the bootstrap cdf Pr[T* � t�F̂] is within
Op(N�1) of the unknown true cdf Pr[T � t�F], which is a better
approximation than one gets using �(t), since the standard normal cdf is
within O(N�1/ 2) and Pr[O(N�1/ 2) � Op(N�1) � 0] gets arbitrarily close
to 1 for sufficiently large N.

What if we use a nonpivotal statistic T? Suppose T �a �[0, �2] so that
T/s �a �[0, 1] where s is a consistent estimate of the standard error. Then
Edgeworth expansions still apply, but now

Pr�T � t�F	 � �
t/�� � N�1/ 2b
t/���
t/�� � O
N�1�,

for some quadratic function b� � a�, and similarly for the bootstrap
estimates

Pr�T* � t�F̂	 � �
t/s� � N�1/ 2b̂
t/s��
t/s� � Op
N
�1�.

Now, even if b̂� � b� � Op(N�1/ 2), these functions are evaluated at
t/s where usually s � � � Op(N�1/ 2). It follows for nonpivotal T that

Pr�T � t�F	 � Pr�T* � t�F̂	 � Op
N
�1/ 2�, (A3)

so there is no asymptotic refinement. Thus nonpivotal statistics bring no
improvement in the convergence rate relative to using first-order asymp-
totic theory.

The main requirement for the asymptotic refinement (A2) is that an
asymptotically pivotal statistic is the object being bootstrapped. The
bootstrap-t procedure does this.

The preceding analysis shows that for tests of nominal size � the true
size is � � O(N�j/ 2) where j � 2 using the bootstrap-t procedure, while
j � 1 using the usual asymptotic normal approximation and the percentile
and bootstrap-se procedures. These results are for a one-sided test or a
nonsymmetric two-sided test. For a two-sided symmetric test, cancellation
occurs because a(t) is an even function, so one further term in the
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Edgeworth expansion can be used. Then j � 3 using the bootstrap-t
procedure and j � 2 using the other procedures.

APPENDIX B

Bootstrap Procedures

1. Bootstrap-t procedures

We begin with the preferred bootstrap-t procedures using three boot-
strap sampling schemes—pairs cluster, residual cluster, and wild cluster—
that are generalizations of pairs, residual, and wild resampling for non-
clustered data.

Pairs cluster bootstrap-t:

1. From the original sample form w � (�̂1 � �0)/s�̂1
, where s�̂1

is
obtained using the CRVE in equation (3) with ũg � (G/(G �
1))ug.

2. Do B iterations of this step. On the bth iteration:
(a) Form a sample of G clusters {(y*1, X*1), . . . , (y*G, X*G)} by

resampling with replacement G times from the original sample
of clusters.

(b) Calculate the Wald test statistic w*b � (�̂*1,b � �̂1)/s�̂*1,b, where
�̂*1,b and its standard error s�̂*1,b are obtained from OLS estima-
tion using the bth pseudo-sample, s�̂*1,b is obtained using the
same method as that in step 1, and �̂1 is the original OLS
estimate.

3. Reject H0 at level � if and only if w � w*[�/2] or w � w*[1��/2],
where w*[q] denotes the qth quantile of w*1, . . . , w*B.

We consider two variations of this procedure that use alternative
estimators of s�̂ both in step 1 and in step 2b. First, the pairs cluster CR3
bootstrap-t uses the CRVE in equation (3) with ũg calculated using the
CR3 correction. Second, the pairs cluster BDM bootstrap-t uses default
OLS standard errors and is a symmetric version of the Wald test, following
BDM (2004).

The remaining bootstrap-t procedures use residual cluster and wild
cluster resampling schemes that take advantage of the ability to resample
with the null hypothesis �1 � �1

0 imposed.

Cluster residual bootstrap-t with H0 imposed:

1. From OLS estimation on the original sample form w � (�̂1 �
�0)/s�̂1

, where s�̂1
is obtained using the CRVE in equation (3) with

ũg � (G/(G � 1))ûg. Also obtain the restricted OLS estimator �̂R

that imposes H0 : �1 � �1
0, and the associated restricted OLS

residuals {û1
R, . . . , ûG

R}.13

2. Do B iterations of this step. On the bth iteration:
(a) Form a sample of G clusters {(ŷ*1, X1), . . . , (ŷ*G, XG)} by

resampling with replacement G times from {û1
R, . . . , ûG

R} to
give {û1

R*, . . . , ûG
R*} and then forming ŷ*g � X�g�̂R � ûg

R*,
g � 1, . . . , G.

(b) Calculate the Wald test statistic w*b � (�̂*1,b � �1
0)/s�̂*1,b where

�̂*1,b and its standard error s�̂*1,b are obtained from unrestricted
OLS estimation using the bth pseudo-sample, with s�̂*1,b com-
puted using the same method as that in step 1.

3. Reject H0 at level � if and only if w � w*[�/2] or w � w*[1��/2],
where w*[q] denotes the qth quantile of w*1, . . . , w*B.

Hall (1992, pp. 184–191) provides theoretical justification for the
residual bootstrap for clustered errors. This bootstrap is used as a bench-
mark in Monte Carlo simulations for the other bootstraps. In practice it is
too restrictive as it assumes that ug are i.i.d., ruling out heteroskedasticity
across clusters, and that clusters are balanced.

Wild cluster bootstrap-t with H0 imposed:
The wild cluster bootstrap-t with H0 imposed follows the same steps as

the cluster residual bootstrap-t with H0 imposed, except that step 2a is
replaced as follows:

2a. Form a sample of G clusters {(ŷ*1, X1), . . . , (ŷ*G, XG)} by the
following method. For each cluster g � 1, . . . , G, form either
ûg

R* � ûg
R with probability 0.5 or ûg

R* � �ûg
R with probability 0.5 and

then form ŷ*g � X�g�̂R � ûg
R*, g � 1, . . . , G.

A variety of weights ag have been proposed for the wild bootstrap. The
ones we use, with ag � 1 with probability 0.5 and ag � �1 with
probability 0.5 are called Rademacher weights. Mammen (1993) actually
proposed an alternative set of weights: ag � (1 � �5)/ 2 � �0.6180
with probability (1 � �5)/2�5 � 0.7236 and ag � 1 � (1 � �5)/ 2
with probability 1 � (1 � �5)/2�5. These weights are the only
two-point distribution that satisfy the constraints E[ag] � 0 and E[ag

2] �
1 and the additional constraint E[ag

3] � 1, which is necessary to achieve
asymptotic refinement if �̂ is asymmetrically distributed.

2. Bootstrap-se Methods

We present the bootstrap-se for pairs cluster resampling.

Pairs cluster bootstrap-se:

1. From the original sample form �̂1.
2. Do B iterations of this step. On the bth iteration:

(a) Form a sample of G clusters {(y*1, X*1), . . . , (y*G, X*G)} by
resampling with replacement G times from the original sample.

(b) Calculate the OLS estimate �̂*1,b.
3. Reject H0 at level � if and only if �wBSE� � z�/2, where

wBSE �
�̂1 � �1

0

s�̂1,B
,

s�̂1,B is the bootstrap estimate of the standard error

s�̂1,B � � 1

B � 1 �
b�1

B

(�̂*1b � �̂*1
�

)2�1/2

,

and �̂*1
�

� (1/B) ¥b�1
B �̂*1b.

This method is easily adapted to the other resampling schemes by
appropriately amending steps 1 and 2a.

13 The restricted estimator can be obtained by regressing yig � �1
0x1,ig on

a constant and all regressors other than x1,ig.
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